1
artículo
Publicado 2019
Enlace
Enlace
CONCYTEC, Direccion de Gestion de la Investigacion-Pontificia Universidad Catolica del Peru (DGI-PUCP), and Vicerrectorado de Investigacion-Universidad Nacional de Ingenieria (VRI-UNI) (Peru); and by the Latin American Center for Physics (CLAF); NCN Opus Grant No. 2016/21/B/ST2/01092 (Poland). We thank the MINOS Collaboration for use of its near detector data. Finally, we thank the staff of Fermilab for support of the beam line, the detector, and the computing infrastructure.
2
artículo
This document was prepared by members of the MINERvA Collaboration using the resources of the Fermi National Accelerator Laboratory, a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. These resources included support for the MINERvA construction project, and support for construction also was granted by the United States National Science Foundation under Grant No. PHY-0619727 and by the University of Rochester. Support for scientists for this specific publication was granted by the United States National Science Foundation under Grants No. PHY-1306944 and No. PHY-1607381. We are grateful for the United States National Science Foundation's decade of direct support to the Soudan Underground Lab outreach program, including Grant No. PHY-1212342; this analysis originated as ...
3
artículo
This work was supported by the Fermi National Accelerator Laboratory under U.S. Department of Energy Contract No. DE-AC02-07CH11359 which included the MINERvA construction project. Construction support was also granted by the United States National Science Foundation under Award No. PHY-0619727 and by the University of Rochester. Support for participating scientists was provided by NSF and DOE (USA), by CAPES and CNPq (Brazil), by CoNaCyT (Mexico), by CONICYT (Chile), by CONCYTEC, DGI-PUCP and IDI/IGI-UNI (Peru), and by Latin American Center for Physics (CLAF). We thank the MINOS Collaboration for use of its near detector data. We acknowledge the dedicated work of the Fermilab staff responsible for the operation and maintenance of the NuMI beamline, MINERvA and MINOS detectors and the physical and software environments that support scientific computing at Fermilab.
4
artículo
Publicado 2019
Enlace
Enlace
MINERvA presents a new analysis of neutrino induced quasielastic-like interactions in a hydrocarbon tracking target. We report a double-differential cross section using the muon transverse and longitudinal momentum. In addition, differential cross sections as a function of the square of the four-momentum transferred and the neutrino energy are calculated using a quasielastic hypothesis. Finally, an analysis of energy deposited near the interaction vertex is presented. These results are compared to modified genie predictions as well as a NuWro prediction. All results use a data set produced by 3.34×1020 protons on target creating a neutrino beam with a peak energy of approximately 3.5 GeV. .