Mostrando 1 - 3 Resultados de 3 Para Buscar 'Elkins M.', tiempo de consulta: 0.02s Limitar resultados
1
artículo
This document was prepared by members of the MINERvA Collaboration using the resources of the Fermi National Accelerator Laboratory, a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. These resources included support for the MINERvA construction project, and support for construction also was granted by the United States National Science Foundation under Grant No. PHY-0619727 and by the University of Rochester. Support for scientists for this specific publication was granted by the United States National Science Foundation under Grants No. PHY-1306944 and No. PHY-1607381. We are grateful for the United States National Science Foundation's decade of direct support to the Soudan Underground Lab outreach program, including Grant No. PHY-1212342; this analysis originated as ...
2
artículo
We are grateful to the authors of the RPA and 2p2h models for making the code for their calculations available for study and incorporation into this analysis. This work was supported by the Fermi National Accelerator Laboratory under U.S. Department of Energy Contract No. DE-AC02-07CH11359, which included the MINERvA construction project. Construction support was also granted by the United States National Science Foundation under Grant No. PHY-0619727 and by the University of Rochester. Support for scientists for this specific publication was granted by the United States National Science Foundation under Grant No. PHY-1306944. Support for participating scientists was provided by NSF and DOE (USA) by CAPES and CNPq (Brazil), by CoNaCyT (Mexico), by CONICYT (Chile), by CONCYTEC, DGI-PUCP and IDI/IGI-UNI (Peru), and by Latin American Center for Physics (CLAF). We thank the MINOS Collaborati...
3
artículo
We report on multinucleon effects in low momentum transfer (< 0.8 GeV=c) antineutrino interactions on plastic (CH) scintillator. These data are from the 2010–2011 antineutrino phase of the MINERvA experiment at Fermilab. The hadronic energy spectrum of this inclusive sample is well described when a screening effect at a low energy transfer and a two-nucleon knockout process are added to a relativistic Fermi gas model of quasielastic, Δ resonance, and higher resonance processes. In this analysis, model elements introduced to describe previously published neutrino results have quantitatively similar benefits for this antineutrino sample. We present the results as a double-differential cross section to accelerate the investigation of alternate models for antineutrino scattering off nuclei.