Convolution-based machine learning to attenuate Covid-19's infections in large cities

Descripción del Articulo

ABSTRACT In this paper a nonlinear mathematical model based at convolution theory and translated in terms of Machine Learning philosophy is presented. In essence, peaks functions are assumed as the pattern of rate of infections at large cities. In this manner, once the free parameters of theses patt...

Descripción completa

Detalles Bibliográficos
Autor: Nieto-Chaupis, Huber
Formato: tesis de grado
Fecha de Publicación:2021
Institución:Universidad Privada del Norte
Repositorio:UPN-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.upn.edu.pe:11537/28012
Enlace del recurso:https://hdl.handle.net/11537/28012
https://doi.org/10.1109/AIKE48582.2020.00044
Nivel de acceso:acceso abierto
Materia:Covid-19
Pandemia
Modelos matematicos
Ciudades
https://purl.org/pe-repo/ocde/ford#3.03.03
id UUPN_33721377deb0ce27f7653f9ff2a3dcb7
oai_identifier_str oai:repositorio.upn.edu.pe:11537/28012
network_acronym_str UUPN
network_name_str UPN-Institucional
repository_id_str 1873
dc.title.es_PE.fl_str_mv Convolution-based machine learning to attenuate Covid-19's infections in large cities
title Convolution-based machine learning to attenuate Covid-19's infections in large cities
spellingShingle Convolution-based machine learning to attenuate Covid-19's infections in large cities
Nieto-Chaupis, Huber
Covid-19
Pandemia
Modelos matematicos
Ciudades
https://purl.org/pe-repo/ocde/ford#3.03.03
title_short Convolution-based machine learning to attenuate Covid-19's infections in large cities
title_full Convolution-based machine learning to attenuate Covid-19's infections in large cities
title_fullStr Convolution-based machine learning to attenuate Covid-19's infections in large cities
title_full_unstemmed Convolution-based machine learning to attenuate Covid-19's infections in large cities
title_sort Convolution-based machine learning to attenuate Covid-19's infections in large cities
author Nieto-Chaupis, Huber
author_facet Nieto-Chaupis, Huber
author_role author
dc.contributor.author.fl_str_mv Nieto-Chaupis, Huber
dc.subject.es_PE.fl_str_mv Covid-19
Pandemia
Modelos matematicos
Ciudades
topic Covid-19
Pandemia
Modelos matematicos
Ciudades
https://purl.org/pe-repo/ocde/ford#3.03.03
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#3.03.03
description ABSTRACT In this paper a nonlinear mathematical model based at convolution theory and translated in terms of Machine Learning philosophy is presented. In essence, peaks functions are assumed as the pattern of rate of infections at large cities. In this manner, once the free parameters of theses patterns are identified then one proceeds to engage to the well-known Mitchell's criteria in order to construct the algorithm that would yield the best estimates as to carry out social intervention as well as to predict dates about the main characteristics of infection's distributions. The distributions are modeled by the Dirac-Delta function whose spike property is used to make the numerical convolutions. In this manner the parameters of Dirac-Delta function's argument are interpreted as the model parameters that determine the dates of social regulation such as quarantine as well as the possible date of end of first wave and potential periods of the beginning of a second one. The theoretical and computational approach is illustrated with a case of outbreak depending on free parameters simulating the implementation of new rules to detain the infections.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-10-01T15:23:44Z
dc.date.available.none.fl_str_mv 2021-10-01T15:23:44Z
dc.date.issued.fl_str_mv 2021-03-03
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
dc.identifier.citation.es_PE.fl_str_mv Nieto, H., ...[et al.]. (2021). Convolution-based machine learning to attenuate Covid-19's infections in large cities. IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), 148-152. https://doi.org/10.1109/AIKE48582.2020.00044
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11537/28012
dc.identifier.journal.es_PE.fl_str_mv IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/AIKE48582.2020.00044
identifier_str_mv Nieto, H., ...[et al.]. (2021). Convolution-based machine learning to attenuate Covid-19's infections in large cities. IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), 148-152. https://doi.org/10.1109/AIKE48582.2020.00044
IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)
url https://hdl.handle.net/11537/28012
https://doi.org/10.1109/AIKE48582.2020.00044
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/3.0/us/
eu_rights_str_mv openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América
https://creativecommons.org/licenses/by-nc-sa/3.0/us/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv IEEE
dc.publisher.country.es_PE.fl_str_mv US
dc.source.es_PE.fl_str_mv Universidad Privada del Norte
Repositorio Institucional - UPN
dc.source.none.fl_str_mv reponame:UPN-Institucional
instname:Universidad Privada del Norte
instacron:UPN
instname_str Universidad Privada del Norte
instacron_str UPN
institution UPN
reponame_str UPN-Institucional
collection UPN-Institucional
bitstream.url.fl_str_mv https://repositorio.upn.edu.pe/bitstream/11537/28012/2/license_rdf
https://repositorio.upn.edu.pe/bitstream/11537/28012/1/Convolution-based%20Machine%20Learning%20To%20Attenuate%20Covid-19%e2%80%99s%20Infections%20.pdf
https://repositorio.upn.edu.pe/bitstream/11537/28012/3/license.txt
https://repositorio.upn.edu.pe/bitstream/11537/28012/4/Convolution-based%20Machine%20Learning%20To%20Attenuate%20Covid-19%e2%80%99s%20Infections%20.pdf.txt
https://repositorio.upn.edu.pe/bitstream/11537/28012/5/Convolution-based%20Machine%20Learning%20To%20Attenuate%20Covid-19%e2%80%99s%20Infections%20.pdf.jpg
bitstream.checksum.fl_str_mv 80294ba9ff4c5b4f07812ee200fbc42f
ec1895c585737a119f0ff7663975ad9b
8a4605be74aa9ea9d79846c1fba20a33
52e4d77c3f87771fd89060f90da08be7
0bf136fd8c7db2a779f1d6b4a4dcc95e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UPN
repository.mail.fl_str_mv jordan.rivero@upn.edu.pe
_version_ 1752944199814086656
spelling Nieto-Chaupis, Huber2021-10-01T15:23:44Z2021-10-01T15:23:44Z2021-03-03Nieto, H., ...[et al.]. (2021). Convolution-based machine learning to attenuate Covid-19's infections in large cities. IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), 148-152. https://doi.org/10.1109/AIKE48582.2020.00044https://hdl.handle.net/11537/28012IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)https://doi.org/10.1109/AIKE48582.2020.00044ABSTRACT In this paper a nonlinear mathematical model based at convolution theory and translated in terms of Machine Learning philosophy is presented. In essence, peaks functions are assumed as the pattern of rate of infections at large cities. In this manner, once the free parameters of theses patterns are identified then one proceeds to engage to the well-known Mitchell's criteria in order to construct the algorithm that would yield the best estimates as to carry out social intervention as well as to predict dates about the main characteristics of infection's distributions. The distributions are modeled by the Dirac-Delta function whose spike property is used to make the numerical convolutions. In this manner the parameters of Dirac-Delta function's argument are interpreted as the model parameters that determine the dates of social regulation such as quarantine as well as the possible date of end of first wave and potential periods of the beginning of a second one. The theoretical and computational approach is illustrated with a case of outbreak depending on free parameters simulating the implementation of new rules to detain the infections.Revisión por paresLos Olivosapplication/pdfengIEEEUSinfo:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 3.0 Estados Unidos de Américahttps://creativecommons.org/licenses/by-nc-sa/3.0/us/Universidad Privada del NorteRepositorio Institucional - UPNreponame:UPN-Institucionalinstname:Universidad Privada del Norteinstacron:UPNCovid-19PandemiaModelos matematicosCiudadeshttps://purl.org/pe-repo/ocde/ford#3.03.03Convolution-based machine learning to attenuate Covid-19's infections in large citiesinfo:eu-repo/semantics/bachelorThesisSUNEDUCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.upn.edu.pe/bitstream/11537/28012/2/license_rdf80294ba9ff4c5b4f07812ee200fbc42fMD52ORIGINALConvolution-based Machine Learning To Attenuate Covid-19’s Infections .pdfConvolution-based Machine Learning To Attenuate Covid-19’s Infections .pdfapplication/pdf974006https://repositorio.upn.edu.pe/bitstream/11537/28012/1/Convolution-based%20Machine%20Learning%20To%20Attenuate%20Covid-19%e2%80%99s%20Infections%20.pdfec1895c585737a119f0ff7663975ad9bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.upn.edu.pe/bitstream/11537/28012/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53TEXTConvolution-based Machine Learning To Attenuate Covid-19’s Infections .pdf.txtConvolution-based Machine Learning To Attenuate Covid-19’s Infections .pdf.txtExtracted texttext/plain25403https://repositorio.upn.edu.pe/bitstream/11537/28012/4/Convolution-based%20Machine%20Learning%20To%20Attenuate%20Covid-19%e2%80%99s%20Infections%20.pdf.txt52e4d77c3f87771fd89060f90da08be7MD54THUMBNAILConvolution-based Machine Learning To Attenuate Covid-19’s Infections .pdf.jpgConvolution-based Machine Learning To Attenuate Covid-19’s Infections .pdf.jpgGenerated Thumbnailimage/jpeg5138https://repositorio.upn.edu.pe/bitstream/11537/28012/5/Convolution-based%20Machine%20Learning%20To%20Attenuate%20Covid-19%e2%80%99s%20Infections%20.pdf.jpg0bf136fd8c7db2a779f1d6b4a4dcc95eMD5511537/28012oai:repositorio.upn.edu.pe:11537/280122021-10-01 22:03:47.221Repositorio Institucional UPNjordan.rivero@upn.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.955691
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).