Convolution-based machine learning to attenuate Covid-19's infections in large cities
Descripción del Articulo
ABSTRACT In this paper a nonlinear mathematical model based at convolution theory and translated in terms of Machine Learning philosophy is presented. In essence, peaks functions are assumed as the pattern of rate of infections at large cities. In this manner, once the free parameters of theses patt...
| Autor: | |
|---|---|
| Formato: | tesis de grado |
| Fecha de Publicación: | 2021 |
| Institución: | Universidad Privada del Norte |
| Repositorio: | UPN-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.upn.edu.pe:11537/28012 |
| Enlace del recurso: | https://hdl.handle.net/11537/28012 https://doi.org/10.1109/AIKE48582.2020.00044 |
| Nivel de acceso: | acceso abierto |
| Materia: | Covid-19 Pandemia Modelos matematicos Ciudades https://purl.org/pe-repo/ocde/ford#3.03.03 |
| id |
UUPN_33721377deb0ce27f7653f9ff2a3dcb7 |
|---|---|
| oai_identifier_str |
oai:repositorio.upn.edu.pe:11537/28012 |
| network_acronym_str |
UUPN |
| network_name_str |
UPN-Institucional |
| repository_id_str |
1873 |
| dc.title.es_PE.fl_str_mv |
Convolution-based machine learning to attenuate Covid-19's infections in large cities |
| title |
Convolution-based machine learning to attenuate Covid-19's infections in large cities |
| spellingShingle |
Convolution-based machine learning to attenuate Covid-19's infections in large cities Nieto-Chaupis, Huber Covid-19 Pandemia Modelos matematicos Ciudades https://purl.org/pe-repo/ocde/ford#3.03.03 |
| title_short |
Convolution-based machine learning to attenuate Covid-19's infections in large cities |
| title_full |
Convolution-based machine learning to attenuate Covid-19's infections in large cities |
| title_fullStr |
Convolution-based machine learning to attenuate Covid-19's infections in large cities |
| title_full_unstemmed |
Convolution-based machine learning to attenuate Covid-19's infections in large cities |
| title_sort |
Convolution-based machine learning to attenuate Covid-19's infections in large cities |
| author |
Nieto-Chaupis, Huber |
| author_facet |
Nieto-Chaupis, Huber |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Nieto-Chaupis, Huber |
| dc.subject.es_PE.fl_str_mv |
Covid-19 Pandemia Modelos matematicos Ciudades |
| topic |
Covid-19 Pandemia Modelos matematicos Ciudades https://purl.org/pe-repo/ocde/ford#3.03.03 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#3.03.03 |
| description |
ABSTRACT In this paper a nonlinear mathematical model based at convolution theory and translated in terms of Machine Learning philosophy is presented. In essence, peaks functions are assumed as the pattern of rate of infections at large cities. In this manner, once the free parameters of theses patterns are identified then one proceeds to engage to the well-known Mitchell's criteria in order to construct the algorithm that would yield the best estimates as to carry out social intervention as well as to predict dates about the main characteristics of infection's distributions. The distributions are modeled by the Dirac-Delta function whose spike property is used to make the numerical convolutions. In this manner the parameters of Dirac-Delta function's argument are interpreted as the model parameters that determine the dates of social regulation such as quarantine as well as the possible date of end of first wave and potential periods of the beginning of a second one. The theoretical and computational approach is illustrated with a case of outbreak depending on free parameters simulating the implementation of new rules to detain the infections. |
| publishDate |
2021 |
| dc.date.accessioned.none.fl_str_mv |
2021-10-01T15:23:44Z |
| dc.date.available.none.fl_str_mv |
2021-10-01T15:23:44Z |
| dc.date.issued.fl_str_mv |
2021-03-03 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
| format |
bachelorThesis |
| dc.identifier.citation.es_PE.fl_str_mv |
Nieto, H., ...[et al.]. (2021). Convolution-based machine learning to attenuate Covid-19's infections in large cities. IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), 148-152. https://doi.org/10.1109/AIKE48582.2020.00044 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11537/28012 |
| dc.identifier.journal.es_PE.fl_str_mv |
IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE) |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/AIKE48582.2020.00044 |
| identifier_str_mv |
Nieto, H., ...[et al.]. (2021). Convolution-based machine learning to attenuate Covid-19's infections in large cities. IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), 148-152. https://doi.org/10.1109/AIKE48582.2020.00044 IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE) |
| url |
https://hdl.handle.net/11537/28012 https://doi.org/10.1109/AIKE48582.2020.00044 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.fl_str_mv |
SUNEDU |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.*.fl_str_mv |
Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América |
| dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/3.0/us/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América https://creativecommons.org/licenses/by-nc-sa/3.0/us/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
IEEE |
| dc.publisher.country.es_PE.fl_str_mv |
US |
| dc.source.es_PE.fl_str_mv |
Universidad Privada del Norte Repositorio Institucional - UPN |
| dc.source.none.fl_str_mv |
reponame:UPN-Institucional instname:Universidad Privada del Norte instacron:UPN |
| instname_str |
Universidad Privada del Norte |
| instacron_str |
UPN |
| institution |
UPN |
| reponame_str |
UPN-Institucional |
| collection |
UPN-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.upn.edu.pe/bitstream/11537/28012/2/license_rdf https://repositorio.upn.edu.pe/bitstream/11537/28012/1/Convolution-based%20Machine%20Learning%20To%20Attenuate%20Covid-19%e2%80%99s%20Infections%20.pdf https://repositorio.upn.edu.pe/bitstream/11537/28012/3/license.txt https://repositorio.upn.edu.pe/bitstream/11537/28012/4/Convolution-based%20Machine%20Learning%20To%20Attenuate%20Covid-19%e2%80%99s%20Infections%20.pdf.txt https://repositorio.upn.edu.pe/bitstream/11537/28012/5/Convolution-based%20Machine%20Learning%20To%20Attenuate%20Covid-19%e2%80%99s%20Infections%20.pdf.jpg |
| bitstream.checksum.fl_str_mv |
80294ba9ff4c5b4f07812ee200fbc42f ec1895c585737a119f0ff7663975ad9b 8a4605be74aa9ea9d79846c1fba20a33 52e4d77c3f87771fd89060f90da08be7 0bf136fd8c7db2a779f1d6b4a4dcc95e |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional UPN |
| repository.mail.fl_str_mv |
jordan.rivero@upn.edu.pe |
| _version_ |
1752944199814086656 |
| spelling |
Nieto-Chaupis, Huber2021-10-01T15:23:44Z2021-10-01T15:23:44Z2021-03-03Nieto, H., ...[et al.]. (2021). Convolution-based machine learning to attenuate Covid-19's infections in large cities. IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), 148-152. https://doi.org/10.1109/AIKE48582.2020.00044https://hdl.handle.net/11537/28012IEEE Third International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)https://doi.org/10.1109/AIKE48582.2020.00044ABSTRACT In this paper a nonlinear mathematical model based at convolution theory and translated in terms of Machine Learning philosophy is presented. In essence, peaks functions are assumed as the pattern of rate of infections at large cities. In this manner, once the free parameters of theses patterns are identified then one proceeds to engage to the well-known Mitchell's criteria in order to construct the algorithm that would yield the best estimates as to carry out social intervention as well as to predict dates about the main characteristics of infection's distributions. The distributions are modeled by the Dirac-Delta function whose spike property is used to make the numerical convolutions. In this manner the parameters of Dirac-Delta function's argument are interpreted as the model parameters that determine the dates of social regulation such as quarantine as well as the possible date of end of first wave and potential periods of the beginning of a second one. The theoretical and computational approach is illustrated with a case of outbreak depending on free parameters simulating the implementation of new rules to detain the infections.Revisión por paresLos Olivosapplication/pdfengIEEEUSinfo:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 3.0 Estados Unidos de Américahttps://creativecommons.org/licenses/by-nc-sa/3.0/us/Universidad Privada del NorteRepositorio Institucional - UPNreponame:UPN-Institucionalinstname:Universidad Privada del Norteinstacron:UPNCovid-19PandemiaModelos matematicosCiudadeshttps://purl.org/pe-repo/ocde/ford#3.03.03Convolution-based machine learning to attenuate Covid-19's infections in large citiesinfo:eu-repo/semantics/bachelorThesisSUNEDUCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.upn.edu.pe/bitstream/11537/28012/2/license_rdf80294ba9ff4c5b4f07812ee200fbc42fMD52ORIGINALConvolution-based Machine Learning To Attenuate Covid-19’s Infections .pdfConvolution-based Machine Learning To Attenuate Covid-19’s Infections .pdfapplication/pdf974006https://repositorio.upn.edu.pe/bitstream/11537/28012/1/Convolution-based%20Machine%20Learning%20To%20Attenuate%20Covid-19%e2%80%99s%20Infections%20.pdfec1895c585737a119f0ff7663975ad9bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.upn.edu.pe/bitstream/11537/28012/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53TEXTConvolution-based Machine Learning To Attenuate Covid-19’s Infections .pdf.txtConvolution-based Machine Learning To Attenuate Covid-19’s Infections .pdf.txtExtracted texttext/plain25403https://repositorio.upn.edu.pe/bitstream/11537/28012/4/Convolution-based%20Machine%20Learning%20To%20Attenuate%20Covid-19%e2%80%99s%20Infections%20.pdf.txt52e4d77c3f87771fd89060f90da08be7MD54THUMBNAILConvolution-based Machine Learning To Attenuate Covid-19’s Infections .pdf.jpgConvolution-based Machine Learning To Attenuate Covid-19’s Infections .pdf.jpgGenerated Thumbnailimage/jpeg5138https://repositorio.upn.edu.pe/bitstream/11537/28012/5/Convolution-based%20Machine%20Learning%20To%20Attenuate%20Covid-19%e2%80%99s%20Infections%20.pdf.jpg0bf136fd8c7db2a779f1d6b4a4dcc95eMD5511537/28012oai:repositorio.upn.edu.pe:11537/280122021-10-01 22:03:47.221Repositorio Institucional UPNjordan.rivero@upn.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.955691 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).