Machine Learning to Assess Urbanistic Development in the South Pole of Lima City

Descripción del Articulo

We employ Machine Learning through the Mitchell’s criteria to carry out an assessment on the potential spatial configurations at the south pole of Lima city, at Perú. Based at both qualitative and quantitative facts, an model has been proposed that targets to measure the success of spatial expansion...

Descripción completa

Detalles Bibliográficos
Autores: Nieto-Chaupis, Huber, Alfaro-Acuña, Anthony
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Autónoma del Perú
Repositorio:AUTONOMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.autonoma.edu.pe:20.500.13067/1753
Enlace del recurso:https://hdl.handle.net/20.500.13067/1753
https://doi.org/10.1007/978-3-030-94514-5_33
Nivel de acceso:acceso restringido
Materia:Machine learning
Urban cities
Latin American cities
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:We employ Machine Learning through the Mitchell’s criteria to carry out an assessment on the potential spatial configurations at the south pole of Lima city, at Perú. Based at both qualitative and quantitative facts, an model has been proposed that targets to measure the success of spatial expansion of districts based at distances and number of habitants. In this manner Machine Learning appears as a robust tool with capabilities to anticipate the possible achievements as well as issues along the time the city is under spatial growth. The efficiency of sustained growth is measured in terms of success probability. Therefore, we can claim that the ongoing growth of Villa el Salvador engages to some extent the philosophy of Mitchell’s criteria.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).