Machine Learning to Assess Urbanistic Development in the South Pole of Lima City
Descripción del Articulo
We employ Machine Learning through the Mitchell’s criteria to carry out an assessment on the potential spatial configurations at the south pole of Lima city, at Perú. Based at both qualitative and quantitative facts, an model has been proposed that targets to measure the success of spatial expansion...
| Autores: | , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2022 |
| Institución: | Universidad Autónoma del Perú |
| Repositorio: | AUTONOMA-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.autonoma.edu.pe:20.500.13067/1753 |
| Enlace del recurso: | https://hdl.handle.net/20.500.13067/1753 https://doi.org/10.1007/978-3-030-94514-5_33 |
| Nivel de acceso: | acceso restringido |
| Materia: | Machine learning Urban cities Latin American cities https://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
AUTO_0324e1ca475d531cd1b129b6619ffbf9 |
|---|---|
| oai_identifier_str |
oai:repositorio.autonoma.edu.pe:20.500.13067/1753 |
| network_acronym_str |
AUTO |
| network_name_str |
AUTONOMA-Institucional |
| repository_id_str |
4774 |
| spelling |
Nieto-Chaupis, HuberAlfaro-Acuña, Anthony2022-03-10T16:33:25Z2022-03-10T16:33:25Z2022-01-01Nieto-Chaupis H. & Alfaro-Acuña, A. (2022) Machine Learning to Assess Urbanistic Development in the South Pole of Lima City. In: Mendonça P., Cortiços N.D. (eds) Proceedings of the 7th International Conference on Architecture, Materials and Construction. ICAMC 2021. Lecture Notes in Civil Engineering, vol 226. Springer, Cham. https://doi.org/10.1007/978-3-030-94514-5_33978-3-030-94514-5https://hdl.handle.net/20.500.13067/1753Lecture Notes in Civil Engineeringhttps://doi.org/10.1007/978-3-030-94514-5_33We employ Machine Learning through the Mitchell’s criteria to carry out an assessment on the potential spatial configurations at the south pole of Lima city, at Perú. Based at both qualitative and quantitative facts, an model has been proposed that targets to measure the success of spatial expansion of districts based at distances and number of habitants. In this manner Machine Learning appears as a robust tool with capabilities to anticipate the possible achievements as well as issues along the time the city is under spatial growth. The efficiency of sustained growth is measured in terms of success probability. Therefore, we can claim that the ongoing growth of Villa el Salvador engages to some extent the philosophy of Mitchell’s criteria.application/pdfengSpringerPEinfo:eu-repo/semantics/restrictedAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/AUTONOMA226325337reponame:AUTONOMA-Institucionalinstname:Universidad Autónoma del Perúinstacron:AUTONOMAMachine learningUrban citiesLatin American citieshttps://purl.org/pe-repo/ocde/ford#2.02.04Machine Learning to Assess Urbanistic Development in the South Pole of Lima Cityinfo:eu-repo/semantics/articlehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85125230044&doi=10.1007%2f978-3-030-94514-5_33&partnerID=40&md5TEXTMachine Learning to Assess Urbanistic Development in the South Pole of Lima City.pdf.txtMachine Learning to Assess Urbanistic Development in the South Pole of Lima City.pdf.txtExtracted texttext/plain501http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1753/4/Machine%20Learning%20to%20Assess%20Urbanistic%20Development%20in%20the%20South%20Pole%20of%20Lima%20City.pdf.txt18da64ca9a2fca9aa67e853b50dbb413MD54THUMBNAILMachine Learning to Assess Urbanistic Development in the South Pole of Lima City.pdf.jpgMachine Learning to Assess Urbanistic Development in the South Pole of Lima City.pdf.jpgGenerated Thumbnailimage/jpeg5607http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1753/5/Machine%20Learning%20to%20Assess%20Urbanistic%20Development%20in%20the%20South%20Pole%20of%20Lima%20City.pdf.jpg7eaa601785070ca2e91f57e855b2e300MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-885http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1753/2/license.txt9243398ff393db1861c890baeaeee5f9MD52ORIGINALMachine Learning to Assess Urbanistic Development in the South Pole of Lima City.pdfMachine Learning to Assess Urbanistic Development in the South Pole of Lima City.pdfVer fuenteapplication/pdf99335http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1753/3/Machine%20Learning%20to%20Assess%20Urbanistic%20Development%20in%20the%20South%20Pole%20of%20Lima%20City.pdfa33cfe1310f6742bd17811390b26208fMD5320.500.13067/1753oai:repositorio.autonoma.edu.pe:20.500.13067/17532022-03-11 03:00:20.214Repositorio de la Universidad Autonoma del Perúrepositorio@autonoma.pe |
| dc.title.es_PE.fl_str_mv |
Machine Learning to Assess Urbanistic Development in the South Pole of Lima City |
| title |
Machine Learning to Assess Urbanistic Development in the South Pole of Lima City |
| spellingShingle |
Machine Learning to Assess Urbanistic Development in the South Pole of Lima City Nieto-Chaupis, Huber Machine learning Urban cities Latin American cities https://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
Machine Learning to Assess Urbanistic Development in the South Pole of Lima City |
| title_full |
Machine Learning to Assess Urbanistic Development in the South Pole of Lima City |
| title_fullStr |
Machine Learning to Assess Urbanistic Development in the South Pole of Lima City |
| title_full_unstemmed |
Machine Learning to Assess Urbanistic Development in the South Pole of Lima City |
| title_sort |
Machine Learning to Assess Urbanistic Development in the South Pole of Lima City |
| author |
Nieto-Chaupis, Huber |
| author_facet |
Nieto-Chaupis, Huber Alfaro-Acuña, Anthony |
| author_role |
author |
| author2 |
Alfaro-Acuña, Anthony |
| author2_role |
author |
| dc.contributor.author.fl_str_mv |
Nieto-Chaupis, Huber Alfaro-Acuña, Anthony |
| dc.subject.es_PE.fl_str_mv |
Machine learning Urban cities Latin American cities |
| topic |
Machine learning Urban cities Latin American cities https://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
We employ Machine Learning through the Mitchell’s criteria to carry out an assessment on the potential spatial configurations at the south pole of Lima city, at Perú. Based at both qualitative and quantitative facts, an model has been proposed that targets to measure the success of spatial expansion of districts based at distances and number of habitants. In this manner Machine Learning appears as a robust tool with capabilities to anticipate the possible achievements as well as issues along the time the city is under spatial growth. The efficiency of sustained growth is measured in terms of success probability. Therefore, we can claim that the ongoing growth of Villa el Salvador engages to some extent the philosophy of Mitchell’s criteria. |
| publishDate |
2022 |
| dc.date.accessioned.none.fl_str_mv |
2022-03-10T16:33:25Z |
| dc.date.available.none.fl_str_mv |
2022-03-10T16:33:25Z |
| dc.date.issued.fl_str_mv |
2022-01-01 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.citation.es_PE.fl_str_mv |
Nieto-Chaupis H. & Alfaro-Acuña, A. (2022) Machine Learning to Assess Urbanistic Development in the South Pole of Lima City. In: Mendonça P., Cortiços N.D. (eds) Proceedings of the 7th International Conference on Architecture, Materials and Construction. ICAMC 2021. Lecture Notes in Civil Engineering, vol 226. Springer, Cham. https://doi.org/10.1007/978-3-030-94514-5_33 |
| dc.identifier.isbn.none.fl_str_mv |
978-3-030-94514-5 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.13067/1753 |
| dc.identifier.journal.es_PE.fl_str_mv |
Lecture Notes in Civil Engineering |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1007/978-3-030-94514-5_33 |
| identifier_str_mv |
Nieto-Chaupis H. & Alfaro-Acuña, A. (2022) Machine Learning to Assess Urbanistic Development in the South Pole of Lima City. In: Mendonça P., Cortiços N.D. (eds) Proceedings of the 7th International Conference on Architecture, Materials and Construction. ICAMC 2021. Lecture Notes in Civil Engineering, vol 226. Springer, Cham. https://doi.org/10.1007/978-3-030-94514-5_33 978-3-030-94514-5 Lecture Notes in Civil Engineering |
| url |
https://hdl.handle.net/20.500.13067/1753 https://doi.org/10.1007/978-3-030-94514-5_33 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.relation.url.es_PE.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85125230044&doi=10.1007%2f978-3-030-94514-5_33&partnerID=40&md5 |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
restrictedAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Springer |
| dc.publisher.country.es_PE.fl_str_mv |
PE |
| dc.source.es_PE.fl_str_mv |
AUTONOMA |
| dc.source.none.fl_str_mv |
reponame:AUTONOMA-Institucional instname:Universidad Autónoma del Perú instacron:AUTONOMA |
| instname_str |
Universidad Autónoma del Perú |
| instacron_str |
AUTONOMA |
| institution |
AUTONOMA |
| reponame_str |
AUTONOMA-Institucional |
| collection |
AUTONOMA-Institucional |
| dc.source.volume.es_PE.fl_str_mv |
226 |
| dc.source.beginpage.es_PE.fl_str_mv |
325 |
| dc.source.endpage.es_PE.fl_str_mv |
337 |
| bitstream.url.fl_str_mv |
http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1753/4/Machine%20Learning%20to%20Assess%20Urbanistic%20Development%20in%20the%20South%20Pole%20of%20Lima%20City.pdf.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1753/5/Machine%20Learning%20to%20Assess%20Urbanistic%20Development%20in%20the%20South%20Pole%20of%20Lima%20City.pdf.jpg http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1753/2/license.txt http://repositorio.autonoma.edu.pe/bitstream/20.500.13067/1753/3/Machine%20Learning%20to%20Assess%20Urbanistic%20Development%20in%20the%20South%20Pole%20of%20Lima%20City.pdf |
| bitstream.checksum.fl_str_mv |
18da64ca9a2fca9aa67e853b50dbb413 7eaa601785070ca2e91f57e855b2e300 9243398ff393db1861c890baeaeee5f9 a33cfe1310f6742bd17811390b26208f |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de la Universidad Autonoma del Perú |
| repository.mail.fl_str_mv |
repositorio@autonoma.pe |
| _version_ |
1774399980384026624 |
| score |
13.936249 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).