Convolution-based machine learning to attenuate Covid-19's infections in large cities

Descripción del Articulo

ABSTRACT In this paper a nonlinear mathematical model based at convolution theory and translated in terms of Machine Learning philosophy is presented. In essence, peaks functions are assumed as the pattern of rate of infections at large cities. In this manner, once the free parameters of theses patt...

Descripción completa

Detalles Bibliográficos
Autor: Nieto-Chaupis, Huber
Formato: tesis de grado
Fecha de Publicación:2021
Institución:Universidad Privada del Norte
Repositorio:UPN-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.upn.edu.pe:11537/28012
Enlace del recurso:https://hdl.handle.net/11537/28012
https://doi.org/10.1109/AIKE48582.2020.00044
Nivel de acceso:acceso abierto
Materia:Covid-19
Pandemia
Modelos matematicos
Ciudades
https://purl.org/pe-repo/ocde/ford#3.03.03
Descripción
Sumario:ABSTRACT In this paper a nonlinear mathematical model based at convolution theory and translated in terms of Machine Learning philosophy is presented. In essence, peaks functions are assumed as the pattern of rate of infections at large cities. In this manner, once the free parameters of theses patterns are identified then one proceeds to engage to the well-known Mitchell's criteria in order to construct the algorithm that would yield the best estimates as to carry out social intervention as well as to predict dates about the main characteristics of infection's distributions. The distributions are modeled by the Dirac-Delta function whose spike property is used to make the numerical convolutions. In this manner the parameters of Dirac-Delta function's argument are interpreted as the model parameters that determine the dates of social regulation such as quarantine as well as the possible date of end of first wave and potential periods of the beginning of a second one. The theoretical and computational approach is illustrated with a case of outbreak depending on free parameters simulating the implementation of new rules to detain the infections.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).