Desarrollo de una aplicación informática basada en un modelo de mahine learning para mejorar la evaluación de préstamos crediticios
Descripción del Articulo
RESUMEN El presente trabajo de investigación está enfocado en el estudio de un modelo de machine learning para desarrollar una aplicación informática, que permita mejorar la evaluación de préstamos crediticios brindando un mejor análisis de la rentabilidad y el riesgo crediticio; la cual sea usada p...
| Autores: | , |
|---|---|
| Formato: | tesis de grado |
| Fecha de Publicación: | 2017 |
| Institución: | Universidad Privada del Norte |
| Repositorio: | UPN-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.upn.edu.pe:11537/12294 |
| Enlace del recurso: | https://hdl.handle.net/11537/12294 |
| Nivel de acceso: | acceso abierto |
| Materia: | Diseños de sistemas Aplicaciones de computadora Sistemas cliente-servidor https://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
UUPN_2ab015978e968686a3763edd29a82c06 |
|---|---|
| oai_identifier_str |
oai:repositorio.upn.edu.pe:11537/12294 |
| network_acronym_str |
UUPN |
| network_name_str |
UPN-Institucional |
| repository_id_str |
1873 |
| dc.title.es_PE.fl_str_mv |
Desarrollo de una aplicación informática basada en un modelo de mahine learning para mejorar la evaluación de préstamos crediticios |
| title |
Desarrollo de una aplicación informática basada en un modelo de mahine learning para mejorar la evaluación de préstamos crediticios |
| spellingShingle |
Desarrollo de una aplicación informática basada en un modelo de mahine learning para mejorar la evaluación de préstamos crediticios Rodríguez Castillo, Jorge Junior Diseños de sistemas Aplicaciones de computadora Sistemas cliente-servidor https://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
Desarrollo de una aplicación informática basada en un modelo de mahine learning para mejorar la evaluación de préstamos crediticios |
| title_full |
Desarrollo de una aplicación informática basada en un modelo de mahine learning para mejorar la evaluación de préstamos crediticios |
| title_fullStr |
Desarrollo de una aplicación informática basada en un modelo de mahine learning para mejorar la evaluación de préstamos crediticios |
| title_full_unstemmed |
Desarrollo de una aplicación informática basada en un modelo de mahine learning para mejorar la evaluación de préstamos crediticios |
| title_sort |
Desarrollo de una aplicación informática basada en un modelo de mahine learning para mejorar la evaluación de préstamos crediticios |
| author |
Rodríguez Castillo, Jorge Junior |
| author_facet |
Rodríguez Castillo, Jorge Junior Miñano Ochoa, Milagros Madeleine |
| author_role |
author |
| author2 |
Miñano Ochoa, Milagros Madeleine |
| author2_role |
author |
| dc.contributor.advisor.fl_str_mv |
Salazar Campos, Juan Orlando |
| dc.contributor.author.fl_str_mv |
Rodríguez Castillo, Jorge Junior Miñano Ochoa, Milagros Madeleine |
| dc.subject.es_PE.fl_str_mv |
Diseños de sistemas Aplicaciones de computadora Sistemas cliente-servidor |
| topic |
Diseños de sistemas Aplicaciones de computadora Sistemas cliente-servidor https://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
RESUMEN El presente trabajo de investigación está enfocado en el estudio de un modelo de machine learning para desarrollar una aplicación informática, que permita mejorar la evaluación de préstamos crediticios brindando un mejor análisis de la rentabilidad y el riesgo crediticio; la cual sea usada por la empresa financiera que por motivos de privacidad de sus datos llamaremos Financiera Nuestro Crédito. El problema radica en determinar como una aplicación informática basada en un modelo de machine learning contribuye a mejorar la evaluación de préstamos crediticios. Para solucionar dicha problemática se desarrolló una aplicación informática basada en un modelo de regresión logística que permite realizar la evaluación y predicción de préstamos crediticios por medio de una interfaz sencilla, donde se ingresan características principales como; el monto solicitado, la tasa de interés, los plazos del crédito, el estado civil y la edad del solicitante. El modelo de regresión logístico está dividido en cuatro algoritmos principales; un algoritmo para el escalamiento de datos, un algoritmo para predicción denominado función sigmoidal, una función para reducir el costo del modelo y el algoritmo de optimización de la gradiente de descenso. Esta aplicación informática bajo el uso del modelo de regresión logística logrará aumentar el porcentaje de dinero ganado, disminuir la cantidad de dinero perdido y disminuir el tiempo promedio para la aprobación de préstamos crediticios. Los resultados del trabajo de investigación indican que con el desarrollo de esta aplicación informática basada en el modelo de regresión logística se logra aumentar el porcentaje de dinero ganado, se logra disminuir la cantidad de dinero perdido con la evaluación de los préstamos crediticios y el tiempo promedio empleado para aprobar un préstamo crediticio. Además, la eficacia de esta aplicación informática brinda un porcentaje aceptable de predicción para la empresa financiera. Por eso se concluye, que dicha aplicación informática es de gran utilidad para la Financiera Nuestro Crédito. |
| publishDate |
2017 |
| dc.date.accessioned.none.fl_str_mv |
2017-11-25T00:47:20Z |
| dc.date.available.none.fl_str_mv |
2017-11-25T00:47:20Z |
| dc.date.issued.fl_str_mv |
2017-09-05 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
| format |
bachelorThesis |
| dc.identifier.citation.es_PE.fl_str_mv |
Rodríguez, J. J., & Miñano, M. M. (2017). Desarrollo de una aplicación informática basada en un modelo de mahine learning para mejorar la evaluación de préstamos crediticios (Tesis de licenciatura). Repositorio de la Universidad Privada del Norte. Recuperado de http://hdl.handle.net/11537/12294 |
| dc.identifier.other.es_PE.fl_str_mv |
006.3 RODR 2017 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11537/12294 |
| identifier_str_mv |
Rodríguez, J. J., & Miñano, M. M. (2017). Desarrollo de una aplicación informática basada en un modelo de mahine learning para mejorar la evaluación de préstamos crediticios (Tesis de licenciatura). Repositorio de la Universidad Privada del Norte. Recuperado de http://hdl.handle.net/11537/12294 006.3 RODR 2017 |
| url |
https://hdl.handle.net/11537/12294 |
| dc.language.iso.es_PE.fl_str_mv |
spa |
| language |
spa |
| dc.relation.ispartof.fl_str_mv |
SUNEDU |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América |
| dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/3.0/us/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 3.0 Estados Unidos de América https://creativecommons.org/licenses/by-nc-sa/3.0/us/ |
| dc.format.es_PE.fl_str_mv |
application/pdf application/msword |
| dc.publisher.es_PE.fl_str_mv |
Universidad Privada del Norte |
| dc.publisher.country.es_PE.fl_str_mv |
PE |
| dc.source.es_PE.fl_str_mv |
Universidad Privada del Norte Repositorio Institucional - UPN |
| dc.source.none.fl_str_mv |
reponame:UPN-Institucional instname:Universidad Privada del Norte instacron:UPN |
| instname_str |
Universidad Privada del Norte |
| instacron_str |
UPN |
| institution |
UPN |
| reponame_str |
UPN-Institucional |
| collection |
UPN-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.upn.edu.pe/bitstream/11537/12294/4/Rodr%c3%adguez%20Castillo%2c%20Jorge%20Junior%20-%20Mi%c3%b1ano%20Ochoa%2c%20Milagros%20Madeleine.pdf.txt https://repositorio.upn.edu.pe/bitstream/11537/12294/6/Rodr%c3%adguez%20Castillo%2c%20Jorge%20Junior%20-%20Mi%c3%b1ano%20Ochoa%2c%20Milagros%20Madeleine.docx.txt https://repositorio.upn.edu.pe/bitstream/11537/12294/1/Rodr%c3%adguez%20Castillo%2c%20Jorge%20Junior%20-%20Mi%c3%b1ano%20Ochoa%2c%20Milagros%20Madeleine.pdf https://repositorio.upn.edu.pe/bitstream/11537/12294/5/Rodr%c3%adguez%20Castillo%2c%20Jorge%20Junior%20-%20Mi%c3%b1ano%20Ochoa%2c%20Milagros%20Madeleine.docx https://repositorio.upn.edu.pe/bitstream/11537/12294/2/license.txt https://repositorio.upn.edu.pe/bitstream/11537/12294/3/Rodr%c3%adguez%20Castillo%2c%20Jorge%20Junior%20-%20Mi%c3%b1ano%20Ochoa%2c%20Milagros%20Madeleine.pdf.jpg |
| bitstream.checksum.fl_str_mv |
a04922e2cf873b695907833df97f9a36 d000153d80a4b1c3941fe871b40800ef 86a177a681286fb0569844d5ceb9e289 007ec850ecfc05f130f39baebb7c158b cc06ef45b1995443a06f18ffaf2cd78d bdd23df3f8fa45608bbf29429611cd15 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional UPN |
| repository.mail.fl_str_mv |
jordan.rivero@upn.edu.pe |
| _version_ |
1752944165670354944 |
| spelling |
Salazar Campos, Juan OrlandoRodríguez Castillo, Jorge JuniorMiñano Ochoa, Milagros Madeleine2017-11-25T00:47:20Z2017-11-25T00:47:20Z2017-09-05Rodríguez, J. J., & Miñano, M. M. (2017). Desarrollo de una aplicación informática basada en un modelo de mahine learning para mejorar la evaluación de préstamos crediticios (Tesis de licenciatura). Repositorio de la Universidad Privada del Norte. Recuperado de http://hdl.handle.net/11537/12294006.3 RODR 2017https://hdl.handle.net/11537/12294RESUMEN El presente trabajo de investigación está enfocado en el estudio de un modelo de machine learning para desarrollar una aplicación informática, que permita mejorar la evaluación de préstamos crediticios brindando un mejor análisis de la rentabilidad y el riesgo crediticio; la cual sea usada por la empresa financiera que por motivos de privacidad de sus datos llamaremos Financiera Nuestro Crédito. El problema radica en determinar como una aplicación informática basada en un modelo de machine learning contribuye a mejorar la evaluación de préstamos crediticios. Para solucionar dicha problemática se desarrolló una aplicación informática basada en un modelo de regresión logística que permite realizar la evaluación y predicción de préstamos crediticios por medio de una interfaz sencilla, donde se ingresan características principales como; el monto solicitado, la tasa de interés, los plazos del crédito, el estado civil y la edad del solicitante. El modelo de regresión logístico está dividido en cuatro algoritmos principales; un algoritmo para el escalamiento de datos, un algoritmo para predicción denominado función sigmoidal, una función para reducir el costo del modelo y el algoritmo de optimización de la gradiente de descenso. Esta aplicación informática bajo el uso del modelo de regresión logística logrará aumentar el porcentaje de dinero ganado, disminuir la cantidad de dinero perdido y disminuir el tiempo promedio para la aprobación de préstamos crediticios. Los resultados del trabajo de investigación indican que con el desarrollo de esta aplicación informática basada en el modelo de regresión logística se logra aumentar el porcentaje de dinero ganado, se logra disminuir la cantidad de dinero perdido con la evaluación de los préstamos crediticios y el tiempo promedio empleado para aprobar un préstamo crediticio. Además, la eficacia de esta aplicación informática brinda un porcentaje aceptable de predicción para la empresa financiera. Por eso se concluye, que dicha aplicación informática es de gran utilidad para la Financiera Nuestro Crédito.ABSTRACT The present research work is focused on the study of a machine learning model to develop an informatic application, which allow to improve the evaluation of credit loans by providing a better analysis of the profitability and credit risk; which is used by the financial company that for reason of privacy of its data we will call Financiera Nuestro Crédito. The problema lies in determining how an informatic application based on a machine learning model contributes to improving the evaluation of credit loans. To solve this problema was developed an informatic application based on a logistic regression model which allows to perform the evaluation and prediction of credit loans through a simple interface, where the user put some principal features such as; el amount requested, interest rate, credit terms, marital status and the age of the applicant. The logistic regression model is divided in four main algorithms, the first one is a function for scaling data, the second one is an algorithm for prediction that is called sigmoid function, the third one is a function to reduce the cost of the model and the last one is the algorithm of optimization called the gradient descent. This informatic application under the use of the logistic regression model will achieve to increase the percentage of earned money, decrease the amount of lost money and decrease of the time average for the approval of credit loans. The results of the reasearch work indicate that with the development of this informatic application based on a logistic regression model, the percentage of earned money is increased, the amount of lost money is reduced by the evaluation of the credit loans and the average time spent to approve a credit loan is reduced, too. Besides that, the effectiveness of this informatic application give an aceptable percentage of prediction for the financial company. For these reason, it is concluded that this informatic application is very useful to Financiera Nuestro Crédito.TesisTrujillo San Isidroapplication/pdfapplication/mswordspaUniversidad Privada del NortePEinfo:eu-repo/semantics/openAccessAtribución-NoComercial-CompartirIgual 3.0 Estados Unidos de Américahttps://creativecommons.org/licenses/by-nc-sa/3.0/us/Universidad Privada del NorteRepositorio Institucional - UPNreponame:UPN-Institucionalinstname:Universidad Privada del Norteinstacron:UPNDiseños de sistemasAplicaciones de computadoraSistemas cliente-servidorhttps://purl.org/pe-repo/ocde/ford#2.02.04Desarrollo de una aplicación informática basada en un modelo de mahine learning para mejorar la evaluación de préstamos crediticiosinfo:eu-repo/semantics/bachelorThesisSUNEDUUniversidad Privada del Norte. Facultad de IngenieríaTítulo ProfesionalIngeniería de Sistemas ComputacionalesIngeniero de Sistemas ComputacionalesPregrado418529407097328571076827612086Quiñones Martínez, Paúl AlexanderGómez Ávila, José AlbertoVásquez Pereyra, José Humbertohttps://purl.org/pe-repo/renati/level#tituloProfesionalhttps://purl.org/pe-repo/renati/type#tesisTEXTRodríguez Castillo, Jorge Junior - Miñano Ochoa, Milagros Madeleine.pdf.txtRodríguez Castillo, Jorge Junior - Miñano Ochoa, Milagros Madeleine.pdf.txtExtracted texttext/plain237412https://repositorio.upn.edu.pe/bitstream/11537/12294/4/Rodr%c3%adguez%20Castillo%2c%20Jorge%20Junior%20-%20Mi%c3%b1ano%20Ochoa%2c%20Milagros%20Madeleine.pdf.txta04922e2cf873b695907833df97f9a36MD54Rodríguez Castillo, Jorge Junior - Miñano Ochoa, Milagros Madeleine.docx.txtRodríguez Castillo, Jorge Junior - Miñano Ochoa, Milagros Madeleine.docx.txtExtracted texttext/plain207376https://repositorio.upn.edu.pe/bitstream/11537/12294/6/Rodr%c3%adguez%20Castillo%2c%20Jorge%20Junior%20-%20Mi%c3%b1ano%20Ochoa%2c%20Milagros%20Madeleine.docx.txtd000153d80a4b1c3941fe871b40800efMD56ORIGINALRodríguez Castillo, Jorge Junior - Miñano Ochoa, Milagros Madeleine.pdfRodríguez Castillo, Jorge Junior - Miñano Ochoa, Milagros Madeleine.pdfapplication/pdf3300031https://repositorio.upn.edu.pe/bitstream/11537/12294/1/Rodr%c3%adguez%20Castillo%2c%20Jorge%20Junior%20-%20Mi%c3%b1ano%20Ochoa%2c%20Milagros%20Madeleine.pdf86a177a681286fb0569844d5ceb9e289MD51Rodríguez Castillo, Jorge Junior - Miñano Ochoa, Milagros Madeleine.docxRodríguez Castillo, Jorge Junior - Miñano Ochoa, Milagros Madeleine.docxapplication/vnd.openxmlformats-officedocument.wordprocessingml.document2211799https://repositorio.upn.edu.pe/bitstream/11537/12294/5/Rodr%c3%adguez%20Castillo%2c%20Jorge%20Junior%20-%20Mi%c3%b1ano%20Ochoa%2c%20Milagros%20Madeleine.docx007ec850ecfc05f130f39baebb7c158bMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81789https://repositorio.upn.edu.pe/bitstream/11537/12294/2/license.txtcc06ef45b1995443a06f18ffaf2cd78dMD52THUMBNAILRodríguez Castillo, Jorge Junior - Miñano Ochoa, Milagros Madeleine.pdf.jpgRodríguez Castillo, Jorge Junior - Miñano Ochoa, Milagros Madeleine.pdf.jpgIM Thumbnailimage/jpeg6647https://repositorio.upn.edu.pe/bitstream/11537/12294/3/Rodr%c3%adguez%20Castillo%2c%20Jorge%20Junior%20-%20Mi%c3%b1ano%20Ochoa%2c%20Milagros%20Madeleine.pdf.jpgbdd23df3f8fa45608bbf29429611cd15MD5311537/12294oai:repositorio.upn.edu.pe:11537/122942021-11-10 09:32:00.882Repositorio Institucional UPNjordan.rivero@upn.edu.peTElDRU5DSUEgZGUgZGlzdHJpYnVjacOzbiBubyBleGNsdXNpdmEgZmlybWFuZG8geSAKZW52aWFuZG8gZXN0YSBsaWNlbmNpYSwgIHVzdGVkIChlbCBkdWXDsW8gZGUgYXV0b3IKbyBjb3B5cmlnaHQpICBvdG9yZ2EgYSBEU3BhY2UgVW5pdmVyc2lkYWQgKERTVSkgCmVsICBuby1kZXJlY2hvIGV4Y2x1c2l2byBhIHJlcHJvZHVjaXIsICB0cmFkdWNpciAKKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSwgeS9vICBkaXN0cmlidWlyIHR1IApwcmVzZW50YWNpw7NuKGluY2x1eWVuZG8gZWwgcmVzdW1lbikgZW4gdG9kbyAKZWwgbXVuZG8gZW4gZm9ybWF0byBpbXByZXNvIHkgZWxlY3Ryw7NuaWNvIHkgCmVuIGN1YWxxdWllciBtZWRpbywgaW5jbHV5ZW5kbyBwZXJvIG5vIApsaW1pdGFkbyBhIGF1ZGlvIG8gdsOtZGVvLlVzdGVkIGFjZXB0YSBxdWUgRVNEIApwdWVkZSB0cmFkdWNpciAgc2luIGNhbWJpYXIgZWwgY29udGVuaWRvLCBsYSAKcHJlc2VudGFjacOzbiBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gY29uIAplbCBwcm9ww7NzaXRvIGRlIGNvbnNlcnZhY2nDs24uIFVzdGVkIHRhbWJpw6luIAphY3VlcmRhIHF1ZSBFU0QgcHVlZGUgbWFudGVuZXIgbcOhcyBkZSB1bmEgY29waWEgCmRlIGVzdGEgcHJlc2VudGFjacOzbiBwYXJhIGZpbmVzIGRlIHNlZ3VyaWRhZCwgCmNvcGlhIGRlIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24uIFJlcHJlc2VudGEgCnF1ZSBsYSBwcmVzZW50YWNpw7NuIGVzIHN1IHRyYWJham8gb3JpZ2luYWwsIHkgCnF1ZSB1c3RlZCB0aWVuZSBlbCBkZXJlY2hvIGRlIG90b3JnYXIgbG9zIGRlcmVjaG9zIApjb250ZW5pZG9zIGVuIGVzdGEgbGljZW5jaWEuIFRhbWJpw6luIHJlcHJlc2VudGEgcXVlIApzdSBwcmVzZW50YWNpw7NuIG5vLCBhIGxvIG1lam9yIGRlIHN1IGNvbm9jaW1pZW50bywgCmluZnJpbmphIGN1YWxxdWllciBkZXJlY2hvIGRlIGF1dG9yLiBTaSBsYSBwcmVzZW50YWNpw7NuIApjb250aWVuZSBtYXRlcmlhbCBwYXJhIHF1ZSB1c3RlZCBubyB0aWVuZW4gZGVyZWNob3MgCmRlIGF1dG9yLCB1c3RlZCByZXByZXNlbnRhIHF1ZSBoYSBvYnRlbmlkbyBlbCAKcGVybWlzbyBzaW4gcmVzdHJpY2Npw7NuIGRlbCBwcm9waWV0YXJpbyBkZWwgCmNvcHlyaWdodCBwYXJhIGNvbmNlZGVyIEVTRCBsb3MgZGVyZWNob3MgCnJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW5jaWEsIHkgcXVlIHRhbGVzIHRlcmNlcm9zIApwcm9waWVkYWQgbWF0ZXJpYWwgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSAKcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZSBsYSBwcmVzZW50YWNpw7NuLiAKU0kgTEEgUFJFU0VOVEFDScOTTiBTRSBCQVNBIEVOIEVMIFRSQUJBSk8gUVVFIEhBIFNJRE8gClBBVFJPQ0lOQURBIE8gQVBPWUFEQSBQT1IgVU5BIEFHRU5DSUEgVSBPUkdBTklaQUNJw5NOIApRVUUgTk8gU0VBTiBERSBFU0QsIFVTVEVEIFJFUFJFU0VOVEEgUVVFIFVTVEVEIFRJRU5FIApDVU1QTElETyBDT04gQ1VBTFFVSUVSIERFUkVDSE8gREUgUkVWSVNJw5NOIFUgT1RSQVMgCk9CTElHQUNJT05FUyBSRVFVRVJJREFTIFBPUiBUQUwgQ09OVFJBVE8gTyBBQ1VFUkRPLiAKRVNEIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdSBub21icmUgY29tbyBlbCBhdXRvcgpvIHByb3BpZXRhcmlvL3MgZGUgbGEgcHJlc2VudGFjacOzbiB5IG5vIGhhcsOhIApuaW5ndW5hIGFsdGVyYWNpw7NuLCBleGNlcHRvIHNlZ8O6biBsbyBwZXJtaXRpZG8gCnBvciBlc3RhIGxpY2VuY2lhLCBwYXJhIHN1IHByZXNlbnRhY2nDs24uCg== |
| score |
13.905282 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).