Desarrollo de una aplicación informática basada en un modelo de mahine learning para mejorar la evaluación de préstamos crediticios
Descripción del Articulo
        RESUMEN El presente trabajo de investigación está enfocado en el estudio de un modelo de machine learning para desarrollar una aplicación informática, que permita mejorar la evaluación de préstamos crediticios brindando un mejor análisis de la rentabilidad y el riesgo crediticio; la cual sea usada p...
              
            
    
                        | Autores: | , | 
|---|---|
| Formato: | tesis de grado | 
| Fecha de Publicación: | 2017 | 
| Institución: | Universidad Privada del Norte | 
| Repositorio: | UPN-Institucional | 
| Lenguaje: | español | 
| OAI Identifier: | oai:repositorio.upn.edu.pe:11537/12294 | 
| Enlace del recurso: | https://hdl.handle.net/11537/12294 | 
| Nivel de acceso: | acceso abierto | 
| Materia: | Diseños de sistemas Aplicaciones de computadora Sistemas cliente-servidor https://purl.org/pe-repo/ocde/ford#2.02.04 | 
| Sumario: | RESUMEN El presente trabajo de investigación está enfocado en el estudio de un modelo de machine learning para desarrollar una aplicación informática, que permita mejorar la evaluación de préstamos crediticios brindando un mejor análisis de la rentabilidad y el riesgo crediticio; la cual sea usada por la empresa financiera que por motivos de privacidad de sus datos llamaremos Financiera Nuestro Crédito. El problema radica en determinar como una aplicación informática basada en un modelo de machine learning contribuye a mejorar la evaluación de préstamos crediticios. Para solucionar dicha problemática se desarrolló una aplicación informática basada en un modelo de regresión logística que permite realizar la evaluación y predicción de préstamos crediticios por medio de una interfaz sencilla, donde se ingresan características principales como; el monto solicitado, la tasa de interés, los plazos del crédito, el estado civil y la edad del solicitante. El modelo de regresión logístico está dividido en cuatro algoritmos principales; un algoritmo para el escalamiento de datos, un algoritmo para predicción denominado función sigmoidal, una función para reducir el costo del modelo y el algoritmo de optimización de la gradiente de descenso. Esta aplicación informática bajo el uso del modelo de regresión logística logrará aumentar el porcentaje de dinero ganado, disminuir la cantidad de dinero perdido y disminuir el tiempo promedio para la aprobación de préstamos crediticios. Los resultados del trabajo de investigación indican que con el desarrollo de esta aplicación informática basada en el modelo de regresión logística se logra aumentar el porcentaje de dinero ganado, se logra disminuir la cantidad de dinero perdido con la evaluación de los préstamos crediticios y el tiempo promedio empleado para aprobar un préstamo crediticio. Además, la eficacia de esta aplicación informática brinda un porcentaje aceptable de predicción para la empresa financiera. Por eso se concluye, que dicha aplicación informática es de gran utilidad para la Financiera Nuestro Crédito. | 
|---|
 Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
    La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
 
   
   
             
            