Predictive model to reduce the dropout rate of university students in Perú: Bayesian Networks vs. Decision Trees
Descripción del Articulo
El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado.
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2020 |
| Institución: | Universidad Peruana de Ciencias Aplicadas |
| Repositorio: | UPC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/656775 |
| Enlace del recurso: | http://hdl.handle.net/10757/656775 |
| Nivel de acceso: | acceso embargado |
| Materia: | Bayesian Networks Decision Trees Educational Data Mining predictive analysis university dropout |
| id |
UUPC_daaaafba1160f4c4c06dfa107dc22cec |
|---|---|
| oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/656775 |
| network_acronym_str |
UUPC |
| network_name_str |
UPC-Institucional |
| repository_id_str |
2670 |
| dc.title.es_PE.fl_str_mv |
Predictive model to reduce the dropout rate of university students in Perú: Bayesian Networks vs. Decision Trees |
| title |
Predictive model to reduce the dropout rate of university students in Perú: Bayesian Networks vs. Decision Trees |
| spellingShingle |
Predictive model to reduce the dropout rate of university students in Perú: Bayesian Networks vs. Decision Trees Medina, Erik Cevallos Bayesian Networks Decision Trees Educational Data Mining predictive analysis university dropout |
| title_short |
Predictive model to reduce the dropout rate of university students in Perú: Bayesian Networks vs. Decision Trees |
| title_full |
Predictive model to reduce the dropout rate of university students in Perú: Bayesian Networks vs. Decision Trees |
| title_fullStr |
Predictive model to reduce the dropout rate of university students in Perú: Bayesian Networks vs. Decision Trees |
| title_full_unstemmed |
Predictive model to reduce the dropout rate of university students in Perú: Bayesian Networks vs. Decision Trees |
| title_sort |
Predictive model to reduce the dropout rate of university students in Perú: Bayesian Networks vs. Decision Trees |
| author |
Medina, Erik Cevallos |
| author_facet |
Medina, Erik Cevallos Chunga, Claudio Barahona Armas-Aguirre, Jimmy Grandon, Elizabeth E. |
| author_role |
author |
| author2 |
Chunga, Claudio Barahona Armas-Aguirre, Jimmy Grandon, Elizabeth E. |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Medina, Erik Cevallos Chunga, Claudio Barahona Armas-Aguirre, Jimmy Grandon, Elizabeth E. |
| dc.subject.es_PE.fl_str_mv |
Bayesian Networks Decision Trees Educational Data Mining predictive analysis university dropout |
| topic |
Bayesian Networks Decision Trees Educational Data Mining predictive analysis university dropout |
| description |
El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado. |
| publishDate |
2020 |
| dc.date.accessioned.none.fl_str_mv |
2021-07-19T15:18:48Z |
| dc.date.available.none.fl_str_mv |
2021-07-19T15:18:48Z |
| dc.date.issued.fl_str_mv |
2020-06-01 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.issn.none.fl_str_mv |
21660727 |
| dc.identifier.doi.none.fl_str_mv |
10.23919/CISTI49556.2020.9141095 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/656775 |
| dc.identifier.eissn.none.fl_str_mv |
21660735 |
| dc.identifier.journal.es_PE.fl_str_mv |
Iberian Conference on Information Systems and Technologies, CISTI |
| dc.identifier.eid.none.fl_str_mv |
2-s2.0-85089025364 |
| dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85089025364 |
| dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
| identifier_str_mv |
21660727 10.23919/CISTI49556.2020.9141095 21660735 Iberian Conference on Information Systems and Technologies, CISTI 2-s2.0-85089025364 SCOPUS_ID:85089025364 0000 0001 2196 144X |
| url |
http://hdl.handle.net/10757/656775 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.relation.url.es_PE.fl_str_mv |
https://ieeexplore.ieee.org/document/9141095 |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
| eu_rights_str_mv |
embargoedAccess |
| dc.format.es_PE.fl_str_mv |
application/html |
| dc.publisher.es_PE.fl_str_mv |
IEEE Computer Society |
| dc.source.es_PE.fl_str_mv |
Universidad Peruana de Ciencias Aplicadas (UPC) Repositorio Académico - UPC |
| dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
| instname_str |
Universidad Peruana de Ciencias Aplicadas |
| instacron_str |
UPC |
| institution |
UPC |
| reponame_str |
UPC-Institucional |
| collection |
UPC-Institucional |
| dc.source.journaltitle.none.fl_str_mv |
Iberian Conference on Information Systems and Technologies, CISTI |
| dc.source.volume.none.fl_str_mv |
2020-June |
| bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/656775/1/license.txt |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
| repository.name.fl_str_mv |
Repositorio académico upc |
| repository.mail.fl_str_mv |
upc@openrepository.com |
| _version_ |
1846065768600436736 |
| spelling |
c4d63eb1bd07913fe0cb76750b8e635b0364e03781bc8177658ef37e7e2353574832ce656228b995761b32f4527dfa58c1f7124c8eba41851479f8ee486c440b300Medina, Erik CevallosChunga, Claudio BarahonaArmas-Aguirre, JimmyGrandon, Elizabeth E.2021-07-19T15:18:48Z2021-07-19T15:18:48Z2020-06-012166072710.23919/CISTI49556.2020.9141095http://hdl.handle.net/10757/65677521660735Iberian Conference on Information Systems and Technologies, CISTI2-s2.0-85089025364SCOPUS_ID:850890253640000 0001 2196 144XEl texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado.This research proposes a prediction model that might help reducing the dropout rate of university students in Peru. For this, a three-phase predictive analysis model was designed which was combined with the stages proposed by the IBM SPSS Modeler methodology. Bayesian network techniques was compared with decision trees for their level of accuracy over other algorithms in an Educational Data Mining (EDM) scenario. Data were collected from 500 undergraduate students from a private university in Lima. The results indicate that Bayesian networks behave better than decision trees based on metrics of precision, accuracy, specificity, and error rate. Particularly, the accuracy of Bayesian networks reaches 67.10% while the accuracy for decision trees is 61.92% in the training sample for iteration with 8:2 rate. On the other hand, the variables athletic person (0.30%), own house (0.21%), and high school grades (0.13%) are the ones that contribute most to the prediction model for both Bayesian networks and decision trees.application/htmlengIEEE Computer Societyhttps://ieeexplore.ieee.org/document/9141095info:eu-repo/semantics/embargoedAccessUniversidad Peruana de Ciencias Aplicadas (UPC)Repositorio Académico - UPCIberian Conference on Information Systems and Technologies, CISTI2020-Junereponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCBayesian NetworksDecision TreesEducational Data Miningpredictive analysisuniversity dropoutPredictive model to reduce the dropout rate of university students in Perú: Bayesian Networks vs. Decision Treesinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/656775/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/656775oai:repositorioacademico.upc.edu.pe:10757/6567752021-07-19 15:18:49.526Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.905282 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).