Use of Xception Architecture for the Classification of Skin Lesions
Descripción del Articulo
This study investigates the application of the Xception architecture for accurate classification of skin lesions, focusing on the early detection of melanoma and other malignant skin conditions. Utilizing deep learning techniques, the research aims to enhance the precision and efficiency of skin les...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2024 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/676253 |
Enlace del recurso: | http://hdl.handle.net/10757/676253 |
Nivel de acceso: | acceso embargado |
Materia: | CNN architecture deep learning skin cancer skin lesions |
id |
UUPC_ca6d9900f185b1e5083cd1d7d34560df |
---|---|
oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/676253 |
network_acronym_str |
UUPC |
network_name_str |
UPC-Institucional |
repository_id_str |
2670 |
dc.title.es_PE.fl_str_mv |
Use of Xception Architecture for the Classification of Skin Lesions |
title |
Use of Xception Architecture for the Classification of Skin Lesions |
spellingShingle |
Use of Xception Architecture for the Classification of Skin Lesions Tejada, Cledmir CNN architecture deep learning skin cancer skin lesions |
title_short |
Use of Xception Architecture for the Classification of Skin Lesions |
title_full |
Use of Xception Architecture for the Classification of Skin Lesions |
title_fullStr |
Use of Xception Architecture for the Classification of Skin Lesions |
title_full_unstemmed |
Use of Xception Architecture for the Classification of Skin Lesions |
title_sort |
Use of Xception Architecture for the Classification of Skin Lesions |
author |
Tejada, Cledmir |
author_facet |
Tejada, Cledmir Espinoza, Gustavo Subauste, Daniel |
author_role |
author |
author2 |
Espinoza, Gustavo Subauste, Daniel |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Tejada, Cledmir Espinoza, Gustavo Subauste, Daniel |
dc.subject.es_PE.fl_str_mv |
CNN architecture deep learning skin cancer skin lesions |
topic |
CNN architecture deep learning skin cancer skin lesions |
description |
This study investigates the application of the Xception architecture for accurate classification of skin lesions, focusing on the early detection of melanoma and other malignant skin conditions. Utilizing deep learning techniques, the research aims to enhance the precision and efficiency of skin lesions diagnosis. The study utilizes the TensorFlow framework and the HAM10000 dataset, comprising a vast collection of benign and malignant skin lesion images, for training and evaluating the Xception model. Preprocessing steps, including data splitting, augmentation, and image resizing, are applied to the dataset. The Xception architecture, a deep convolutional neural network, serves as the foundational model, supplemented with customized classification layers for specialized features and predictions. The model’s performance is evaluated using diverse metrics. The experimental outcomes reveal the Xception architecture’s potential in accurately classifying skin lesions. Moreover, the study underscores the significance of extensive and diverse datasets, as well as rigorous clinical validation, in the development of deep learning models for skin cancer detection. The findings contribute to the advancement of early melanoma detection, thereby improving patient outcomes and alleviating the burden of the disease. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-10-28T02:17:58Z |
dc.date.available.none.fl_str_mv |
2024-10-28T02:17:58Z |
dc.date.issued.fl_str_mv |
2024-01-01 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.issn.none.fl_str_mv |
27715914 |
dc.identifier.doi.none.fl_str_mv |
10.54808/IMCIC2024.01.129 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/676253 |
dc.identifier.eissn.none.fl_str_mv |
27715922 |
dc.identifier.journal.es_PE.fl_str_mv |
Proceedings IMCIC - International Multi-Conference on Complexity, Informatics and Cybernetics |
dc.identifier.eid.none.fl_str_mv |
2-s2.0-85192559143 |
dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85192559143 |
dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
identifier_str_mv |
27715914 10.54808/IMCIC2024.01.129 27715922 Proceedings IMCIC - International Multi-Conference on Complexity, Informatics and Cybernetics 2-s2.0-85192559143 SCOPUS_ID:85192559143 0000 0001 2196 144X |
url |
http://hdl.handle.net/10757/676253 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.es_PE.fl_str_mv |
application/html |
dc.publisher.es_PE.fl_str_mv |
International Institute of Informatics and Cybernetics |
dc.source.es_PE.fl_str_mv |
Universidad Peruana de Ciencias Aplicadas (UPC) Repositorio Académico - UPC |
dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
instname_str |
Universidad Peruana de Ciencias Aplicadas |
instacron_str |
UPC |
institution |
UPC |
reponame_str |
UPC-Institucional |
collection |
UPC-Institucional |
dc.source.journaltitle.none.fl_str_mv |
Proceedings IMCIC - International Multi-Conference on Complexity, Informatics and Cybernetics |
dc.source.volume.none.fl_str_mv |
2024-March |
dc.source.beginpage.none.fl_str_mv |
129 |
dc.source.endpage.none.fl_str_mv |
134 |
bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/676253/1/license.txt |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio académico upc |
repository.mail.fl_str_mv |
upc@openrepository.com |
_version_ |
1837187186278006784 |
spelling |
312af9af4510bb0d5970b6517084574c300ad5bd097942442a6b1cf5d497691719df0ca000eedcc1e638489ad341ddf1c1d500Tejada, CledmirEspinoza, GustavoSubauste, Daniel2024-10-28T02:17:58Z2024-10-28T02:17:58Z2024-01-012771591410.54808/IMCIC2024.01.129http://hdl.handle.net/10757/67625327715922Proceedings IMCIC - International Multi-Conference on Complexity, Informatics and Cybernetics2-s2.0-85192559143SCOPUS_ID:851925591430000 0001 2196 144XThis study investigates the application of the Xception architecture for accurate classification of skin lesions, focusing on the early detection of melanoma and other malignant skin conditions. Utilizing deep learning techniques, the research aims to enhance the precision and efficiency of skin lesions diagnosis. The study utilizes the TensorFlow framework and the HAM10000 dataset, comprising a vast collection of benign and malignant skin lesion images, for training and evaluating the Xception model. Preprocessing steps, including data splitting, augmentation, and image resizing, are applied to the dataset. The Xception architecture, a deep convolutional neural network, serves as the foundational model, supplemented with customized classification layers for specialized features and predictions. The model’s performance is evaluated using diverse metrics. The experimental outcomes reveal the Xception architecture’s potential in accurately classifying skin lesions. Moreover, the study underscores the significance of extensive and diverse datasets, as well as rigorous clinical validation, in the development of deep learning models for skin cancer detection. The findings contribute to the advancement of early melanoma detection, thereby improving patient outcomes and alleviating the burden of the disease.application/htmlengInternational Institute of Informatics and Cyberneticsinfo:eu-repo/semantics/embargoedAccessUniversidad Peruana de Ciencias Aplicadas (UPC)Repositorio Académico - UPCProceedings IMCIC - International Multi-Conference on Complexity, Informatics and Cybernetics2024-March129134reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCCNN architecturedeep learningskin cancerskin lesionsUse of Xception Architecture for the Classification of Skin Lesionsinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676253/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/676253oai:repositorioacademico.upc.edu.pe:10757/6762532024-10-28 02:17:59.932Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.971837 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).