Use of Xception Architecture for the Classification of Skin Lesions

Descripción del Articulo

This study investigates the application of the Xception architecture for accurate classification of skin lesions, focusing on the early detection of melanoma and other malignant skin conditions. Utilizing deep learning techniques, the research aims to enhance the precision and efficiency of skin les...

Descripción completa

Detalles Bibliográficos
Autores: Tejada, Cledmir, Espinoza, Gustavo, Subauste, Daniel
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/676253
Enlace del recurso:http://hdl.handle.net/10757/676253
Nivel de acceso:acceso embargado
Materia:CNN architecture
deep learning
skin cancer
skin lesions
id UUPC_ca6d9900f185b1e5083cd1d7d34560df
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/676253
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv Use of Xception Architecture for the Classification of Skin Lesions
title Use of Xception Architecture for the Classification of Skin Lesions
spellingShingle Use of Xception Architecture for the Classification of Skin Lesions
Tejada, Cledmir
CNN architecture
deep learning
skin cancer
skin lesions
title_short Use of Xception Architecture for the Classification of Skin Lesions
title_full Use of Xception Architecture for the Classification of Skin Lesions
title_fullStr Use of Xception Architecture for the Classification of Skin Lesions
title_full_unstemmed Use of Xception Architecture for the Classification of Skin Lesions
title_sort Use of Xception Architecture for the Classification of Skin Lesions
author Tejada, Cledmir
author_facet Tejada, Cledmir
Espinoza, Gustavo
Subauste, Daniel
author_role author
author2 Espinoza, Gustavo
Subauste, Daniel
author2_role author
author
dc.contributor.author.fl_str_mv Tejada, Cledmir
Espinoza, Gustavo
Subauste, Daniel
dc.subject.es_PE.fl_str_mv CNN architecture
deep learning
skin cancer
skin lesions
topic CNN architecture
deep learning
skin cancer
skin lesions
description This study investigates the application of the Xception architecture for accurate classification of skin lesions, focusing on the early detection of melanoma and other malignant skin conditions. Utilizing deep learning techniques, the research aims to enhance the precision and efficiency of skin lesions diagnosis. The study utilizes the TensorFlow framework and the HAM10000 dataset, comprising a vast collection of benign and malignant skin lesion images, for training and evaluating the Xception model. Preprocessing steps, including data splitting, augmentation, and image resizing, are applied to the dataset. The Xception architecture, a deep convolutional neural network, serves as the foundational model, supplemented with customized classification layers for specialized features and predictions. The model’s performance is evaluated using diverse metrics. The experimental outcomes reveal the Xception architecture’s potential in accurately classifying skin lesions. Moreover, the study underscores the significance of extensive and diverse datasets, as well as rigorous clinical validation, in the development of deep learning models for skin cancer detection. The findings contribute to the advancement of early melanoma detection, thereby improving patient outcomes and alleviating the burden of the disease.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-10-28T02:17:58Z
dc.date.available.none.fl_str_mv 2024-10-28T02:17:58Z
dc.date.issued.fl_str_mv 2024-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.none.fl_str_mv 27715914
dc.identifier.doi.none.fl_str_mv 10.54808/IMCIC2024.01.129
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/676253
dc.identifier.eissn.none.fl_str_mv 27715922
dc.identifier.journal.es_PE.fl_str_mv Proceedings IMCIC - International Multi-Conference on Complexity, Informatics and Cybernetics
dc.identifier.eid.none.fl_str_mv 2-s2.0-85192559143
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85192559143
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
identifier_str_mv 27715914
10.54808/IMCIC2024.01.129
27715922
Proceedings IMCIC - International Multi-Conference on Complexity, Informatics and Cybernetics
2-s2.0-85192559143
SCOPUS_ID:85192559143
0000 0001 2196 144X
url http://hdl.handle.net/10757/676253
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.es_PE.fl_str_mv application/html
dc.publisher.es_PE.fl_str_mv International Institute of Informatics and Cybernetics
dc.source.es_PE.fl_str_mv Universidad Peruana de Ciencias Aplicadas (UPC)
Repositorio Académico - UPC
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Proceedings IMCIC - International Multi-Conference on Complexity, Informatics and Cybernetics
dc.source.volume.none.fl_str_mv 2024-March
dc.source.beginpage.none.fl_str_mv 129
dc.source.endpage.none.fl_str_mv 134
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/676253/1/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1837187186278006784
spelling 312af9af4510bb0d5970b6517084574c300ad5bd097942442a6b1cf5d497691719df0ca000eedcc1e638489ad341ddf1c1d500Tejada, CledmirEspinoza, GustavoSubauste, Daniel2024-10-28T02:17:58Z2024-10-28T02:17:58Z2024-01-012771591410.54808/IMCIC2024.01.129http://hdl.handle.net/10757/67625327715922Proceedings IMCIC - International Multi-Conference on Complexity, Informatics and Cybernetics2-s2.0-85192559143SCOPUS_ID:851925591430000 0001 2196 144XThis study investigates the application of the Xception architecture for accurate classification of skin lesions, focusing on the early detection of melanoma and other malignant skin conditions. Utilizing deep learning techniques, the research aims to enhance the precision and efficiency of skin lesions diagnosis. The study utilizes the TensorFlow framework and the HAM10000 dataset, comprising a vast collection of benign and malignant skin lesion images, for training and evaluating the Xception model. Preprocessing steps, including data splitting, augmentation, and image resizing, are applied to the dataset. The Xception architecture, a deep convolutional neural network, serves as the foundational model, supplemented with customized classification layers for specialized features and predictions. The model’s performance is evaluated using diverse metrics. The experimental outcomes reveal the Xception architecture’s potential in accurately classifying skin lesions. Moreover, the study underscores the significance of extensive and diverse datasets, as well as rigorous clinical validation, in the development of deep learning models for skin cancer detection. The findings contribute to the advancement of early melanoma detection, thereby improving patient outcomes and alleviating the burden of the disease.application/htmlengInternational Institute of Informatics and Cyberneticsinfo:eu-repo/semantics/embargoedAccessUniversidad Peruana de Ciencias Aplicadas (UPC)Repositorio Académico - UPCProceedings IMCIC - International Multi-Conference on Complexity, Informatics and Cybernetics2024-March129134reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCCNN architecturedeep learningskin cancerskin lesionsUse of Xception Architecture for the Classification of Skin Lesionsinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676253/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/676253oai:repositorioacademico.upc.edu.pe:10757/6762532024-10-28 02:17:59.932Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.971837
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).