Approach for the Detection of Early Carious Lesions Based on Intraoral Photographs Using YOLOv7 and Faster R-CNN

Descripción del Articulo

Tooth decay is a global challenge due to lack of dental care and excessive sugar consumption. These generate expensive dental treatments and affect quality of life, self-esteem, and productivity. Due to this, an approach is proposed for the detection of carious pre-lesions through dental image proce...

Descripción completa

Detalles Bibliográficos
Autores: Huertas, William, Artica, Kevin, Luis Castillo-Sequera, José, Wong, Lenis
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:español
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/676336
Enlace del recurso:http://hdl.handle.net/10757/676336
Nivel de acceso:acceso embargado
Materia:carious pre-lesions
dental cavities
dental images
Faster R-CNN
Intraoral Photographs
Yolov7
id UUPC_c4955fd3cc72b6115f5988fa1ff43020
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/676336
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv Approach for the Detection of Early Carious Lesions Based on Intraoral Photographs Using YOLOv7 and Faster R-CNN
title Approach for the Detection of Early Carious Lesions Based on Intraoral Photographs Using YOLOv7 and Faster R-CNN
spellingShingle Approach for the Detection of Early Carious Lesions Based on Intraoral Photographs Using YOLOv7 and Faster R-CNN
Huertas, William
carious pre-lesions
dental cavities
dental images
Faster R-CNN
Intraoral Photographs
Yolov7
title_short Approach for the Detection of Early Carious Lesions Based on Intraoral Photographs Using YOLOv7 and Faster R-CNN
title_full Approach for the Detection of Early Carious Lesions Based on Intraoral Photographs Using YOLOv7 and Faster R-CNN
title_fullStr Approach for the Detection of Early Carious Lesions Based on Intraoral Photographs Using YOLOv7 and Faster R-CNN
title_full_unstemmed Approach for the Detection of Early Carious Lesions Based on Intraoral Photographs Using YOLOv7 and Faster R-CNN
title_sort Approach for the Detection of Early Carious Lesions Based on Intraoral Photographs Using YOLOv7 and Faster R-CNN
author Huertas, William
author_facet Huertas, William
Artica, Kevin
Luis Castillo-Sequera, José
Wong, Lenis
author_role author
author2 Artica, Kevin
Luis Castillo-Sequera, José
Wong, Lenis
author2_role author
author
author
dc.contributor.author.fl_str_mv Huertas, William
Artica, Kevin
Luis Castillo-Sequera, José
Wong, Lenis
dc.subject.es_PE.fl_str_mv carious pre-lesions
dental cavities
dental images
Faster R-CNN
Intraoral Photographs
Yolov7
topic carious pre-lesions
dental cavities
dental images
Faster R-CNN
Intraoral Photographs
Yolov7
description Tooth decay is a global challenge due to lack of dental care and excessive sugar consumption. These generate expensive dental treatments and affect quality of life, self-esteem, and productivity. Due to this, an approach is proposed for the detection of carious pre-lesions through dental image processing and using 2 Deep learning architectures most used in the literature: YOLOv7 and Faster RCNN. The approach is developed in 4 phases: (i) acquisition of the dataset, (ii) development of architectures, (iii) performance evaluation and (iv) analysis of results. Both architectures focus on the use of a public dataset composed of a total of 9,327 images of Intraoral Photographs classified into 3 classes: “teeth with cavities” (0), “teeth without cavities” (1) and “teeth with amalgam” (2). A web system was built with the model that had the best performance. The results showed that the YOLOv7 architecture had better performance than Faster R-CNN, obtaining an average accuracy of 95.7% in the detection of teeth “without cavities,” “with cavities” and “with amalgam.”.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-11-02T07:02:11Z
dc.date.available.none.fl_str_mv 2024-11-02T07:02:11Z
dc.date.issued.fl_str_mv 2024-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.doi.none.fl_str_mv 10.18687/LACCEI2024.1.1.1207
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/676336
dc.identifier.eissn.none.fl_str_mv 24146390
dc.identifier.journal.es_PE.fl_str_mv Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology
dc.identifier.eid.none.fl_str_mv 2-s2.0-85203815050
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85203815050
identifier_str_mv 10.18687/LACCEI2024.1.1.1207
24146390
Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology
2-s2.0-85203815050
SCOPUS_ID:85203815050
url http://hdl.handle.net/10757/676336
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.es_PE.fl_str_mv application/html
dc.publisher.es_PE.fl_str_mv Latin American and Caribbean Consortium of Engineering Institutions
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/676336/1/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1837187188451704832
spelling 2d68a0130417120cc3e0a38a0a36b11230085cccf2266851d31df3628892265bed9300f73b78363c83823807efce01908024c5f1524a3bbf68b7e2680e1ab2f7ba0bfd500Huertas, WilliamArtica, KevinLuis Castillo-Sequera, JoséWong, Lenis2024-11-02T07:02:11Z2024-11-02T07:02:11Z2024-01-0110.18687/LACCEI2024.1.1.1207http://hdl.handle.net/10757/67633624146390Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology2-s2.0-85203815050SCOPUS_ID:85203815050Tooth decay is a global challenge due to lack of dental care and excessive sugar consumption. These generate expensive dental treatments and affect quality of life, self-esteem, and productivity. Due to this, an approach is proposed for the detection of carious pre-lesions through dental image processing and using 2 Deep learning architectures most used in the literature: YOLOv7 and Faster RCNN. The approach is developed in 4 phases: (i) acquisition of the dataset, (ii) development of architectures, (iii) performance evaluation and (iv) analysis of results. Both architectures focus on the use of a public dataset composed of a total of 9,327 images of Intraoral Photographs classified into 3 classes: “teeth with cavities” (0), “teeth without cavities” (1) and “teeth with amalgam” (2). A web system was built with the model that had the best performance. The results showed that the YOLOv7 architecture had better performance than Faster R-CNN, obtaining an average accuracy of 95.7% in the detection of teeth “without cavities,” “with cavities” and “with amalgam.”.application/htmlspaLatin American and Caribbean Consortium of Engineering Institutionsinfo:eu-repo/semantics/embargoedAccesscarious pre-lesionsdental cavitiesdental imagesFaster R-CNNIntraoral PhotographsYolov7Approach for the Detection of Early Carious Lesions Based on Intraoral Photographs Using YOLOv7 and Faster R-CNNinfo:eu-repo/semantics/articleProceedings of the LACCEI international Multi-conference for Engineering, Education and Technologyreponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676336/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/676336oai:repositorioacademico.upc.edu.pe:10757/6763362024-11-02 07:02:12.681Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.949868
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).