Approach for the Detection of Early Carious Lesions Based on Intraoral Photographs Using YOLOv7 and Faster R-CNN

Descripción del Articulo

Tooth decay is a global challenge due to lack of dental care and excessive sugar consumption. These generate expensive dental treatments and affect quality of life, self-esteem, and productivity. Due to this, an approach is proposed for the detection of carious pre-lesions through dental image proce...

Descripción completa

Detalles Bibliográficos
Autores: Huertas, William, Artica, Kevin, Luis Castillo-Sequera, José, Wong, Lenis
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:español
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/676336
Enlace del recurso:http://hdl.handle.net/10757/676336
Nivel de acceso:acceso embargado
Materia:carious pre-lesions
dental cavities
dental images
Faster R-CNN
Intraoral Photographs
Yolov7
Descripción
Sumario:Tooth decay is a global challenge due to lack of dental care and excessive sugar consumption. These generate expensive dental treatments and affect quality of life, self-esteem, and productivity. Due to this, an approach is proposed for the detection of carious pre-lesions through dental image processing and using 2 Deep learning architectures most used in the literature: YOLOv7 and Faster RCNN. The approach is developed in 4 phases: (i) acquisition of the dataset, (ii) development of architectures, (iii) performance evaluation and (iv) analysis of results. Both architectures focus on the use of a public dataset composed of a total of 9,327 images of Intraoral Photographs classified into 3 classes: “teeth with cavities” (0), “teeth without cavities” (1) and “teeth with amalgam” (2). A web system was built with the model that had the best performance. The results showed that the YOLOv7 architecture had better performance than Faster R-CNN, obtaining an average accuracy of 95.7% in the detection of teeth “without cavities,” “with cavities” and “with amalgam.”.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).