Approach for the Detection of Early Carious Lesions Based on Intraoral Photographs Using YOLOv7 and Faster R-CNN
Descripción del Articulo
Tooth decay is a global challenge due to lack of dental care and excessive sugar consumption. These generate expensive dental treatments and affect quality of life, self-esteem, and productivity. Due to this, an approach is proposed for the detection of carious pre-lesions through dental image proce...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2024 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/676336 |
Enlace del recurso: | http://hdl.handle.net/10757/676336 |
Nivel de acceso: | acceso embargado |
Materia: | carious pre-lesions dental cavities dental images Faster R-CNN Intraoral Photographs Yolov7 |
Sumario: | Tooth decay is a global challenge due to lack of dental care and excessive sugar consumption. These generate expensive dental treatments and affect quality of life, self-esteem, and productivity. Due to this, an approach is proposed for the detection of carious pre-lesions through dental image processing and using 2 Deep learning architectures most used in the literature: YOLOv7 and Faster RCNN. The approach is developed in 4 phases: (i) acquisition of the dataset, (ii) development of architectures, (iii) performance evaluation and (iv) analysis of results. Both architectures focus on the use of a public dataset composed of a total of 9,327 images of Intraoral Photographs classified into 3 classes: “teeth with cavities” (0), “teeth without cavities” (1) and “teeth with amalgam” (2). A web system was built with the model that had the best performance. The results showed that the YOLOv7 architecture had better performance than Faster R-CNN, obtaining an average accuracy of 95.7% in the detection of teeth “without cavities,” “with cavities” and “with amalgam.”. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).