Identifying important individual- and country-level predictors of conspiracy theorizing: A machine learning analysis
Descripción del Articulo
Psychological research on the predictors of conspiracy theorizing—explaining important social and political events or circumstances as secret plots by malevolent groups—has flourished in recent years. However, research has typically examined only a small number of predictors in one, or a small numbe...
Autores: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/668524 |
Enlace del recurso: | http://hdl.handle.net/10757/668524 |
Nivel de acceso: | acceso abierto |
Materia: | conspiracy theories country-level variables COVID-19 individual-level variables machine learning Psychological research Conspiracy theorizing Predictors National contexts Machine learning Individual- and country-level variables COVID-19 pandemic Societal discontent Political stability Effective government COVID response |
id |
UUPC_ba1a72978aebfa962ccb1546a64fd6c0 |
---|---|
oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/668524 |
network_acronym_str |
UUPC |
network_name_str |
UPC-Institucional |
repository_id_str |
2670 |
dc.title.es_PE.fl_str_mv |
Identifying important individual- and country-level predictors of conspiracy theorizing: A machine learning analysis |
title |
Identifying important individual- and country-level predictors of conspiracy theorizing: A machine learning analysis |
spellingShingle |
Identifying important individual- and country-level predictors of conspiracy theorizing: A machine learning analysis Douglas, Karen M. conspiracy theories country-level variables COVID-19 individual-level variables machine learning Psychological research Conspiracy theorizing Predictors National contexts Machine learning Individual- and country-level variables COVID-19 pandemic Societal discontent Political stability Effective government COVID response |
title_short |
Identifying important individual- and country-level predictors of conspiracy theorizing: A machine learning analysis |
title_full |
Identifying important individual- and country-level predictors of conspiracy theorizing: A machine learning analysis |
title_fullStr |
Identifying important individual- and country-level predictors of conspiracy theorizing: A machine learning analysis |
title_full_unstemmed |
Identifying important individual- and country-level predictors of conspiracy theorizing: A machine learning analysis |
title_sort |
Identifying important individual- and country-level predictors of conspiracy theorizing: A machine learning analysis |
author |
Douglas, Karen M. |
author_facet |
Douglas, Karen M. Sutton, Robbie M. van Lissa, Caspar J. Stroebe, Wolfgang Kreienkamp, Jannis Agostini, Maximilian Bélanger, Jocelyn J. Gützkow, Ben Abakoumkin, Georgios Khaiyom, Jamilah Hanum Abdul Ahmedi, Vjollca Akkas, Handan Almenara, Carlos A. Atta, Mohsin Bagci, Sabahat Cigdem Basel, Sima Berisha Kida, Edona Bernardo, Allan B.I. Buttrick, Nicholas R. Chobthamkit, Phatthanakit Choi, Hoon Seok Cristea, Mioara Csaba, Sára Damnjanovic, Kaja Danyliuk, Ivan Dash, Arobindu Di Santo, Daniela Enea, Violeta Faller, Daiane Gracieli Fitzsimons, Gavan Gheorghiu, Alexandra Gómez, Ángel Hamaidia, Ali Han, Qing Helmy, Mai Hudiyana, Joevarian Jeronimus, Bertus F. Yu Jiang, Ding Jovanović, Veljko Kamenov, Željka Kende, Anna Keng, Shian Ling Kieu, Tra Thi Thanh Koc, Yasin Kovyazina, Kamila Kozytska, Inna Krause, Joshua Kruglanski, Arie W. Kurapov, Anton Kutlaca, Maja Lantos, Nóra Anna Lemay, Edward P. Lesmana, Cokorda Bagus Jaya Louis, Winnifred R. Lueders, Adrian Malik, Najma Iqbal Martinez, Anton McCabe, Kira O. Mehulić, Jasmina Milla, Mirra Noor Mohammed, Idris Molinario, Erica Moyano, Manuel Muhammad, Hayat Mula, Silvana Muluk, Hamdi Myroniuk, Solomiia Najafi, Reza Nisa, Claudia F. Nyúl, Boglárka O'Keefe, Paul A. Olivas Osuna, Jose Javier Osin, Evgeny N. Park, Joonha Pica, Gennaro Pierro, Antonio Rees, Jonas Reitsema, Anne Margit Resta, Elena Rullo, Marika Ryan, Michelle K. Samekin, Adil Santtila, Pekka Sasin, Edyta Schumpe, Birga M. Selim, Heyla A. Stanton, Michael Vicente Sultana, Samiah Tseliou, Eleftheria Utsugi, Akira van Breen, Jolien Anne van Veen, Kees vanDellen, Michelle R. Vázquez, Alexandra Wollast, Robin Yeung, Victoria Wai Lan Zand, Somayeh Žeželj, Iris L. Zheng, Bang Zick, Andreas |
author_role |
author |
author2 |
Sutton, Robbie M. van Lissa, Caspar J. Stroebe, Wolfgang Kreienkamp, Jannis Agostini, Maximilian Bélanger, Jocelyn J. Gützkow, Ben Abakoumkin, Georgios Khaiyom, Jamilah Hanum Abdul Ahmedi, Vjollca Akkas, Handan Almenara, Carlos A. Atta, Mohsin Bagci, Sabahat Cigdem Basel, Sima Berisha Kida, Edona Bernardo, Allan B.I. Buttrick, Nicholas R. Chobthamkit, Phatthanakit Choi, Hoon Seok Cristea, Mioara Csaba, Sára Damnjanovic, Kaja Danyliuk, Ivan Dash, Arobindu Di Santo, Daniela Enea, Violeta Faller, Daiane Gracieli Fitzsimons, Gavan Gheorghiu, Alexandra Gómez, Ángel Hamaidia, Ali Han, Qing Helmy, Mai Hudiyana, Joevarian Jeronimus, Bertus F. Yu Jiang, Ding Jovanović, Veljko Kamenov, Željka Kende, Anna Keng, Shian Ling Kieu, Tra Thi Thanh Koc, Yasin Kovyazina, Kamila Kozytska, Inna Krause, Joshua Kruglanski, Arie W. Kurapov, Anton Kutlaca, Maja Lantos, Nóra Anna Lemay, Edward P. Lesmana, Cokorda Bagus Jaya Louis, Winnifred R. Lueders, Adrian Malik, Najma Iqbal Martinez, Anton McCabe, Kira O. Mehulić, Jasmina Milla, Mirra Noor Mohammed, Idris Molinario, Erica Moyano, Manuel Muhammad, Hayat Mula, Silvana Muluk, Hamdi Myroniuk, Solomiia Najafi, Reza Nisa, Claudia F. Nyúl, Boglárka O'Keefe, Paul A. Olivas Osuna, Jose Javier Osin, Evgeny N. Park, Joonha Pica, Gennaro Pierro, Antonio Rees, Jonas Reitsema, Anne Margit Resta, Elena Rullo, Marika Ryan, Michelle K. Samekin, Adil Santtila, Pekka Sasin, Edyta Schumpe, Birga M. Selim, Heyla A. Stanton, Michael Vicente Sultana, Samiah Tseliou, Eleftheria Utsugi, Akira van Breen, Jolien Anne van Veen, Kees vanDellen, Michelle R. Vázquez, Alexandra Wollast, Robin Yeung, Victoria Wai Lan Zand, Somayeh Žeželj, Iris L. Zheng, Bang Zick, Andreas |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Douglas, Karen M. Sutton, Robbie M. van Lissa, Caspar J. Stroebe, Wolfgang Kreienkamp, Jannis Agostini, Maximilian Bélanger, Jocelyn J. Gützkow, Ben Abakoumkin, Georgios Khaiyom, Jamilah Hanum Abdul Ahmedi, Vjollca Akkas, Handan Almenara, Carlos A. Atta, Mohsin Bagci, Sabahat Cigdem Basel, Sima Berisha Kida, Edona Bernardo, Allan B.I. Buttrick, Nicholas R. Chobthamkit, Phatthanakit Choi, Hoon Seok Cristea, Mioara Csaba, Sára Damnjanovic, Kaja Danyliuk, Ivan Dash, Arobindu Di Santo, Daniela Enea, Violeta Faller, Daiane Gracieli Fitzsimons, Gavan Gheorghiu, Alexandra Gómez, Ángel Hamaidia, Ali Han, Qing Helmy, Mai Hudiyana, Joevarian Jeronimus, Bertus F. Yu Jiang, Ding Jovanović, Veljko Kamenov, Željka Kende, Anna Keng, Shian Ling Kieu, Tra Thi Thanh Koc, Yasin Kovyazina, Kamila Kozytska, Inna Krause, Joshua Kruglanski, Arie W. Kurapov, Anton Kutlaca, Maja Lantos, Nóra Anna Lemay, Edward P. Lesmana, Cokorda Bagus Jaya Louis, Winnifred R. Lueders, Adrian Malik, Najma Iqbal Martinez, Anton McCabe, Kira O. Mehulić, Jasmina Milla, Mirra Noor Mohammed, Idris Molinario, Erica Moyano, Manuel Muhammad, Hayat Mula, Silvana Muluk, Hamdi Myroniuk, Solomiia Najafi, Reza Nisa, Claudia F. Nyúl, Boglárka O'Keefe, Paul A. Olivas Osuna, Jose Javier Osin, Evgeny N. Park, Joonha Pica, Gennaro Pierro, Antonio Rees, Jonas Reitsema, Anne Margit Resta, Elena Rullo, Marika Ryan, Michelle K. Samekin, Adil Santtila, Pekka Sasin, Edyta Schumpe, Birga M. Selim, Heyla A. Stanton, Michael Vicente Sultana, Samiah Tseliou, Eleftheria Utsugi, Akira van Breen, Jolien Anne van Veen, Kees vanDellen, Michelle R. Vázquez, Alexandra Wollast, Robin Yeung, Victoria Wai Lan Zand, Somayeh Žeželj, Iris L. Zheng, Bang Zick, Andreas |
dc.subject.es_PE.fl_str_mv |
conspiracy theories country-level variables COVID-19 individual-level variables machine learning Psychological research Conspiracy theorizing Predictors National contexts Machine learning Individual- and country-level variables COVID-19 pandemic Societal discontent Political stability Effective government COVID response |
topic |
conspiracy theories country-level variables COVID-19 individual-level variables machine learning Psychological research Conspiracy theorizing Predictors National contexts Machine learning Individual- and country-level variables COVID-19 pandemic Societal discontent Political stability Effective government COVID response |
description |
Psychological research on the predictors of conspiracy theorizing—explaining important social and political events or circumstances as secret plots by malevolent groups—has flourished in recent years. However, research has typically examined only a small number of predictors in one, or a small number of, national contexts. Such approaches make it difficult to examine the relative importance of predictors, and risk overlooking some potentially relevant variables altogether. To overcome this limitation, the present study used machine learning to rank-order the importance of 115 individual- and country-level variables in predicting conspiracy theorizing. Data were collected from 56,072 respondents across 28 countries during the early weeks of the COVID-19 pandemic. Echoing previous findings, important predictors at the individual level included societal discontent, paranoia, and personal struggle. Contrary to prior research, important country-level predictors included indicators of political stability and effective government COVID response, which suggests that conspiracy theorizing may thrive in relatively well-functioning democracies. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-08-26T13:37:12Z |
dc.date.available.none.fl_str_mv |
2023-08-26T13:37:12Z |
dc.date.issued.fl_str_mv |
2023-01-01 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.issn.none.fl_str_mv |
00462772 |
dc.identifier.doi.none.fl_str_mv |
10.1002/ejsp.2968 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/668524 |
dc.identifier.eissn.none.fl_str_mv |
10990992 |
dc.identifier.journal.es_PE.fl_str_mv |
European Journal of Social Psychology |
dc.identifier.eid.none.fl_str_mv |
2-s2.0-85164174460 |
dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85164174460 |
dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
identifier_str_mv |
00462772 10.1002/ejsp.2968 10990992 European Journal of Social Psychology 2-s2.0-85164174460 SCOPUS_ID:85164174460 0000 0001 2196 144X |
url |
http://hdl.handle.net/10757/668524 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.relation.url.es_PE.fl_str_mv |
https://onlinelibrary.wiley.com/doi/epdf/10.1002/ejsp.2968 |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
John Wiley and Sons Ltd |
dc.source.es_PE.fl_str_mv |
Universidad Peruana de Ciencias Aplicadas (UPC) Repositorio Academico - UPC |
dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
instname_str |
Universidad Peruana de Ciencias Aplicadas |
instacron_str |
UPC |
institution |
UPC |
reponame_str |
UPC-Institucional |
collection |
UPC-Institucional |
dc.source.journaltitle.none.fl_str_mv |
European Journal of Social Psychology |
bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/668524/5/10.1002ejsp.2968.pdf.jpg https://repositorioacademico.upc.edu.pe/bitstream/10757/668524/4/10.1002ejsp.2968.pdf.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/668524/3/license.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/668524/2/license_rdf https://repositorioacademico.upc.edu.pe/bitstream/10757/668524/1/10.1002ejsp.2968.pdf |
bitstream.checksum.fl_str_mv |
f7fecb950bfe4eb8fc77a836c8a0c2ed 38a2b7c02171d342d1279af428c51124 8a4605be74aa9ea9d79846c1fba20a33 4460e5956bc1d1639be9ae6146a50347 e26d58d1304974b17676cd1b9004ecf5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio académico upc |
repository.mail.fl_str_mv |
upc@openrepository.com |
_version_ |
1837186795391942656 |
spelling |
1612f40aa41fd53acd474a254a8f5b1f500336ccac2f88708399f289e687d819d19500a68d2e71f920cb1fe07c11a308a561e9500d8a15f07e2a9d522de810eb5800ecad0500220a7d8045e55150c71b5e7276f35c7d5005ea4b83370b105c4c646eba241bb57e6500e6f7eae99e3a20a2facc9ca5bac998ae500b8be6b29aa6fa6a84e9ba7d9f9baeaf350052b92e67a57122e50c70c16696d2affe500497ed511b2ab474c3028b9bcc142745013aa2711b0b93986f82a35462a91e5e650012de1fd4fb60c442a009fad5a7da62fd5009380f0e4470e7af797885d850ff1a6087910be1b68d082f7a586d6c193ae6de65003fdf6101b4b57262eea0d0f426ec6e96500d068889ca64dc589cfb10882d60c7dd0500babc51312d9ba7c652a99021e475ba165009e27686e178759ac24b84bbbd1f4f644500ba43a58c6a5dbe1b318b4ca0e641d2d75007ee61f2c89f22ada112bffeb98c80f45500ef817ea299b6f3e6d60db3db316cab3d500550080b71c6d74a5b0835a81abb9ad12500f883212fd6e49ed5e7698631e9bdd81a5005447ca597eb98938275ad5df8c4cce175001747f5229d69d3f49fc16ffb31ab0fca50030068af3618bbb92b353e7965e995bcf500f9730a90b2710b23b20bd48f045fae517207b5ed297780287782553281d8bd035008996ca586fda24714dff335b25e5018b50044dc11d7166fb8cf67d2b80ce6e64c495009f79c5458d79258b3d7eed06119091a9500ae7fb9ab5c0462d03c019c04ef6a4fda50068d79c98c32efa3836cb2da11c5df90a500377efc22e2966a36f9b3ca05590d5139500c9255343418d08a76f6a1081092125e150070a01dfe54166bc15479a53fc1239bc85001670de614dcfe8135d8a222688f30c3450084163aa4346b416d56e0b479834fac8c0eebdabd114f3d120e3203a676c52793500221da6d919a684da928946cd32557d395002126a303bb20979527947e86d470916450002b95edea8a2873cc879e7e12ac3dca6500dd2fb67cbf6c1057fc141f791d09b2c5c728d1f761d8f4de51e3af2965eb68275004f332f33c401879eb24087dca950cec75003af8c0e8066df0b2bc6b6d79d640a2d65005516492118c0239e2092996db04feaa15002dfb0772d440d81ea78e825e268414b8500a656bc1ba5224f7e24fcdef3af1b4776500913a4cd0c7b3dd064564e1f357f6fd6a500ad3e381c14713dfb59131b49843e11fd5009ca15b001c955d7646c7db681e6f562a500548f58f688033bc68587a2297121d215fe072cfd0d480f83d72c1fa17069f652500bc4ab8dbdf0468a98269ed7d9a47b831500b626ff8ec3d210086dddeac1fcc1c13f500f4dcb225ca1136c7be61b48d681003855007b45224aa5b4c2580f69aa5fec1d252a50067b6b16db3d03efe8da37b7920fb613c500b0bf4ea8c040a9ceb7cff6c3820faa61500d343683b2fe18dadf238dee48adbb6ea50011bc32bfacb7d9b7a66ce596bcb0866c500dd80a12977c9bd18f710531f6f995bc2500fdebd06a0e65ee0633bebaa2de415da25006a3840c63d88503ceaede68a5c4fd919500f00058b45232573e7a6d06df00080ff8500289c50b26d4e2ba516deaca8f91a4e86500d3eee2598fe9eb3c21982c95d74b80a95002a3670b8c7d0e3721336ab691663eb09500bfbb1a6c462f97520565baec0c7c97bc500edfb9d574a6cf82809b451a0b289f14b500e744c3e918af2d8caf27757b27409940500644321285b7aaadcc7811c527af617515004661052fcee68ef3be54b37827c96b39500b2620985e87229ce618d9e2c4183b361500a057aa837bc5c9a3d0b6a326c25d9a655006212d40c39e0f4f4998c76346e9c4ccc500ed95280f470be2eeafbe9c460c1f67b6500cac79152d8daedcdd7b764416431339d50057b45e91cebcdeea27ec68c13bb7a78a500d1486563463b04ce52228fb8008000a1500562ab51da8eeb5c9e91813ac33c2ec5b50031ae0627ea615334a692c7e3e4734b22500d2beb24f7a24e44c750c654c52276f0850014d63759a30f9e76f8a8eefc44907cd050026030cd2e1748437fbeb91f5e25a82c65009fe297ed28abb6e9ae6590d4bcc90c05500342a4fd9c65b5bbb5dfb0e22ce582312500cbb0f805da570ce0ae0df1d6e9f6e59550019120b488fb93d91cd5f050af46aedd9500af06ce1dd83f7acf1a64913cb1eb0b5c05fe4205735cfaaf95cc000b8b04e1c2500696695e4d866d0827a35147c953155475006a4a41efe9ce316ec55a1531baee56a1500b8225a19ee6fe8a7d6e40c706153590c5003c279b95b51e0e45960f72a9ef6803fe351e59d53c23c9046a1e3eb604bfdb765003d2b0be9054a566f22d8c7f2845360b43001bddad59e1096fdf96f432341d21dbed5001a108d7efea005ce33701834126724ae500Douglas, Karen M.Sutton, Robbie M.van Lissa, Caspar J.Stroebe, WolfgangKreienkamp, JannisAgostini, MaximilianBélanger, Jocelyn J.Gützkow, BenAbakoumkin, GeorgiosKhaiyom, Jamilah Hanum AbdulAhmedi, VjollcaAkkas, HandanAlmenara, Carlos A.Atta, MohsinBagci, Sabahat CigdemBasel, SimaBerisha Kida, EdonaBernardo, Allan B.I.Buttrick, Nicholas R.Chobthamkit, PhatthanakitChoi, Hoon SeokCristea, MioaraCsaba, SáraDamnjanovic, KajaDanyliuk, IvanDash, ArobinduDi Santo, DanielaEnea, VioletaFaller, Daiane GracieliFitzsimons, GavanGheorghiu, AlexandraGómez, ÁngelHamaidia, AliHan, QingHelmy, MaiHudiyana, JoevarianJeronimus, Bertus F.Yu Jiang, DingJovanović, VeljkoKamenov, ŽeljkaKende, AnnaKeng, Shian LingKieu, Tra Thi ThanhKoc, YasinKovyazina, KamilaKozytska, InnaKrause, JoshuaKruglanski, Arie W.Kurapov, AntonKutlaca, MajaLantos, Nóra AnnaLemay, Edward P.Lesmana, Cokorda Bagus JayaLouis, Winnifred R.Lueders, AdrianMalik, Najma IqbalMartinez, AntonMcCabe, Kira O.Mehulić, JasminaMilla, Mirra NoorMohammed, IdrisMolinario, EricaMoyano, ManuelMuhammad, HayatMula, SilvanaMuluk, HamdiMyroniuk, SolomiiaNajafi, RezaNisa, Claudia F.Nyúl, BoglárkaO'Keefe, Paul A.Olivas Osuna, Jose JavierOsin, Evgeny N.Park, JoonhaPica, GennaroPierro, AntonioRees, JonasReitsema, Anne MargitResta, ElenaRullo, MarikaRyan, Michelle K.Samekin, AdilSanttila, PekkaSasin, EdytaSchumpe, Birga M.Selim, Heyla A.Stanton, Michael VicenteSultana, SamiahTseliou, EleftheriaUtsugi, Akiravan Breen, Jolien Annevan Veen, KeesvanDellen, Michelle R.Vázquez, AlexandraWollast, RobinYeung, Victoria Wai LanZand, SomayehŽeželj, Iris L.Zheng, BangZick, Andreas2023-08-26T13:37:12Z2023-08-26T13:37:12Z2023-01-010046277210.1002/ejsp.2968http://hdl.handle.net/10757/66852410990992European Journal of Social Psychology2-s2.0-85164174460SCOPUS_ID:851641744600000 0001 2196 144XPsychological research on the predictors of conspiracy theorizing—explaining important social and political events or circumstances as secret plots by malevolent groups—has flourished in recent years. However, research has typically examined only a small number of predictors in one, or a small number of, national contexts. Such approaches make it difficult to examine the relative importance of predictors, and risk overlooking some potentially relevant variables altogether. To overcome this limitation, the present study used machine learning to rank-order the importance of 115 individual- and country-level variables in predicting conspiracy theorizing. Data were collected from 56,072 respondents across 28 countries during the early weeks of the COVID-19 pandemic. Echoing previous findings, important predictors at the individual level included societal discontent, paranoia, and personal struggle. Contrary to prior research, important country-level predictors included indicators of political stability and effective government COVID response, which suggests that conspiracy theorizing may thrive in relatively well-functioning democracies.New York University Abu DhabiODS 3: Salud y bienestarODS 16: Paz, justicia e instituciones sólidasODS 10: Reducción de las desigualdadesapplication/pdfengJohn Wiley and Sons Ltdhttps://onlinelibrary.wiley.com/doi/epdf/10.1002/ejsp.2968info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Universidad Peruana de Ciencias Aplicadas (UPC)Repositorio Academico - UPCEuropean Journal of Social Psychologyreponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCconspiracy theoriescountry-level variablesCOVID-19individual-level variablesmachine learningPsychological researchConspiracy theorizingPredictorsNational contextsMachine learningIndividual- and country-level variablesCOVID-19 pandemicSocietal discontentPolitical stabilityEffective government COVID responseIdentifying important individual- and country-level predictors of conspiracy theorizing: A machine learning analysisinfo:eu-repo/semantics/article2023-08-26T13:37:12ZTHUMBNAIL10.1002ejsp.2968.pdf.jpg10.1002ejsp.2968.pdf.jpgGenerated Thumbnailimage/jpeg117080https://repositorioacademico.upc.edu.pe/bitstream/10757/668524/5/10.1002ejsp.2968.pdf.jpgf7fecb950bfe4eb8fc77a836c8a0c2edMD55falseTEXT10.1002ejsp.2968.pdf.txt10.1002ejsp.2968.pdf.txtExtracted texttext/plain72572https://repositorioacademico.upc.edu.pe/bitstream/10757/668524/4/10.1002ejsp.2968.pdf.txt38a2b7c02171d342d1279af428c51124MD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/668524/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorioacademico.upc.edu.pe/bitstream/10757/668524/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52falseORIGINAL10.1002ejsp.2968.pdf10.1002ejsp.2968.pdfapplication/pdf816740https://repositorioacademico.upc.edu.pe/bitstream/10757/668524/1/10.1002ejsp.2968.pdfe26d58d1304974b17676cd1b9004ecf5MD51true10757/668524oai:repositorioacademico.upc.edu.pe:10757/6685242024-07-18 23:19:55.911Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.95948 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).