1
artículo
Publicado 2023
Enlace
Enlace
Psychological research on the predictors of conspiracy theorizing—explaining important social and political events or circumstances as secret plots by malevolent groups—has flourished in recent years. However, research has typically examined only a small number of predictors in one, or a small number of, national contexts. Such approaches make it difficult to examine the relative importance of predictors, and risk overlooking some potentially relevant variables altogether. To overcome this limitation, the present study used machine learning to rank-order the importance of 115 individual- and country-level variables in predicting conspiracy theorizing. Data were collected from 56,072 respondents across 28 countries during the early weeks of the COVID-19 pandemic. Echoing previous findings, important predictors at the individual level included societal discontent, paranoia, and persona...
2
artículo
Publicado 2022
Enlace
Enlace
We examine how social contacts and feelings of solidarity shape experiences of loneliness during the COVID-19 lockdown in early 2020. From the PsyCorona database, we obtained longitudinal data from 23 countries, collected between March and May 2020. The results demonstrated that although online contacts help to reduce feelings of loneliness, people who feel more lonely are less likely to use that strategy. Solidarity played only a small role in shaping feelings of loneliness during lockdown. Thus, it seems we must look beyond the current focus on online contact and solidarity to help people address feelings of loneliness during lockdown. Finally, online contacts did not function as a substitute for face-to-face contacts outside the home—in fact, more frequent online contact in earlier weeks predicted more frequent face-to-face contacts in later weeks. As such, this work provides releva...
3
artículo
Publicado 2021
Enlace
Enlace
During the initial phase of the COVID-19 pandemic, U.S. conservative politicians and the media downplayed the risk of both contracting COVID-19 and the effectiveness of recommended health behaviors. Health behavior theories suggest perceived vulnerability to a health threat and perceived effectiveness of recommended health-protective behaviors determine motivation to follow recommendations. Accordingly, we predicted that—as a result of politicization of the pandemic—politically conservative Americans would be less likely to enact recommended health-protective behaviors. In two longitudinal studies of U.S. residents, political conservatism was inversely associated with perceived health risk and adoption of health-protective behaviors over time. The effects of political orientation on health-protective behaviors were mediated by perceived risk of infection, perceived severity of infect...
4
artículo
Publicado 2022
Enlace
Enlace
The present paper examines longitudinally how subjective perceptions about COVID-19, one’s community, and the government predict adherence to public health measures to reduce the spread of the virus. Using an international survey (N = 3040), we test how infection risk perception, trust in the governmental response and communications about COVID-19, conspiracy beliefs, social norms on distancing, tightness of culture, and community punishment predict various containment-related attitudes and behavior. Autoregressive analyses indicate that, at the personal level, personal hygiene behavior was predicted by personal infection risk perception. At social level, social distancing behaviors such as abstaining from face-to-face contact were predicted by perceived social norms. Support for behavioral mandates was predicted by confidence in the government and cultural tightness, whereas support f...
5
artículo
Publicado 2022
Enlace
Enlace
Before vaccines for coronavirus disease 2019 (COVID-19) became available, a set of infection-prevention behaviors constituted the primary means to mitigate the virus spread. Our study aimed to identify important predictors of this set of behaviors. Whereas social and health psychological theories suggest a limited set of predictors, machine-learning analyses can identify correlates from a larger pool of candidate predictors. We used random forests to rank 115 candidate correlates of infection-prevention behavior in 56,072 participants across 28 countries, administered in March to May 2020. The machine-learning model predicted 52% of the variance in infection-prevention behavior in a separate test sample—exceeding the performance of psychological models of health behavior. Results indicated the two most important predictors related to individual-level injunctive norms. Illustrating how ...
6
artículo
Publicado 2024
Enlace
Enlace
Virus mitigation behavior has been and still is a powerful means to fight the COVID-19 pandemic irrespective of the availability of pharmaceutical means (e.g., vaccines). We drew on health behavior theories to predict health-protective (coping-specific) responses and hope (coping non-specific response) from health-related cognitions (vulnerability, severity, self-assessed knowledge, efficacy). In an extension of this model, we proposed orientation to internal (problem-focused coping) and external (country capability) coping resources as antecedents of health protection and hope; health-related cognitions were assumed as mediators of this link. We tested these predictions in a large multi-national multi-wave study with a cross-sectional panel at T1 (Baseline, March-April 2020; N = 57,631 in 113 countries) and a panel subsample at two later time points, T2 (November 2020; N = 3097) and T3 ...