Predictors of adherence to public health behaviors for fighting COVID-19 derived from longitudinal data

Descripción del Articulo

The present paper examines longitudinally how subjective perceptions about COVID-19, one’s community, and the government predict adherence to public health measures to reduce the spread of the virus. Using an international survey (N = 3040), we test how infection risk perception, trust in the govern...

Descripción completa

Detalles Bibliográficos
Autores: Schumpe, Birga M., van Lissa, Caspar J., Bélanger, Jocelyn J., Ruggeri, Kai, Mierau, Jochen, Nisa, Claudia F., Molinario, Erica, Gelfand, Michele J., Stroebe, Wolfgang, Agostini, Maximilian, Gützkow, Ben, Jeronimus, Bertus F., Kreienkamp, Jannis, Kutlaca, Maja, Lemay, Edward P., Reitsema, Anne Margit, vanDellen, Michelle R., Abakoumkin, Georgios, Abdul Khaiyom, Jamilah Hanum, Ahmedi, Vjollca, Akkas, Handan, Almenara, Carlos A., Atta, Mohsin, Bagci, Sabahat Cigdem, Basel, Sima, Berisha Kida, Edona, Bernardo, Allan B.I., Buttrick, Nicholas R., Chobthamkit, Phatthanakit, Choi, Hoon Seok, Cristea, Mioara, Csaba, Sara, Damnjanović, Kaja, Danyliuk, Ivan, Dash, Arobindu, Di Santo, Daniela, Douglas, Karen M., Enea, Violeta, Faller, Daiane, Fitzsimons, Gavan J., Gheorghiu, Alexandra, Gómez, Ángel, Hamaidia, Ali, Han, Qing, Helmy, Mai, Hudiyana, Joevarian, Jiang, Ding Yu, Jovanović, Veljko, Kamenov, Zeljka, Kende, Anna, Keng, Shian Ling, Kieu, Tra Thi Thanh, Koc, Yasin, Kovyazina, Kamila, Kozytska, Inna, Krause, Joshua, Kruglanski, Arie W., Kurapov, Anton, Lantos, Nóra Anna, Lesmana, Cokorda Bagus J., Louis, Winnifred R., Lueders, Adrian, Malik, Najma Iqbal, Martinez, Anton P., McCabe, Kira O., Mehulić, Jasmina, Milla, Mirra Noor, Mohammed, Idris, Moyano, Manuel, Muhammad, Hayat, Mula, Silvana, Muluk, Hamdi, Myroniuk, Solomiia, Najafi, Reza, Nyúl, Boglárka, O’Keefe, Paul A., Olivas Osuna, Jose Javier, Osin, Evgeny N., Park, Joonha, Pica, Gennaro, Pierro, Antonio, Rees, Jonas H., Resta, Elena, Rullo, Marika, Ryan, Michelle K., Samekin, Adil, Santtila, Pekka, Sasin, Edyta, Selim, Heyla A., Stanton, Michael Vicente, Sultana, Samiah, Sutton, Robbie M., Tseliou, Eleftheria, Utsugi, Akira, van Breen, Jolien A., van Veen, Kees, Vázquez, Alexandra, Wollast, Robin, Yeung, Victoria Wai Lan, Zand, Somayeh
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/659494
Enlace del recurso:http://hdl.handle.net/10757/659494
Nivel de acceso:acceso abierto
Materia:Public health
COVID-19
Perception
Descripción
Sumario:The present paper examines longitudinally how subjective perceptions about COVID-19, one’s community, and the government predict adherence to public health measures to reduce the spread of the virus. Using an international survey (N = 3040), we test how infection risk perception, trust in the governmental response and communications about COVID-19, conspiracy beliefs, social norms on distancing, tightness of culture, and community punishment predict various containment-related attitudes and behavior. Autoregressive analyses indicate that, at the personal level, personal hygiene behavior was predicted by personal infection risk perception. At social level, social distancing behaviors such as abstaining from face-to-face contact were predicted by perceived social norms. Support for behavioral mandates was predicted by confidence in the government and cultural tightness, whereas support for anti-lockdown protests was predicted by (lower) perceived clarity of communication about the virus. Results are discussed in light of policy implications and creating effective interventions. © 2022, The Author(s).
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).