A decision tree–based classifier to provide nutritional plans recommendations
Descripción del Articulo
The use of machine learning algorithms in the field of nutritional health is a topic that has been developed in recent years for the early diagnosis of diseases or the recommendation of better nutritional habits. People with poor diets are more prone to chronic diseases and, in the long term, this c...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2022 |
| Institución: | Universidad Peruana de Ciencias Aplicadas |
| Repositorio: | UPC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/660550 |
| Enlace del recurso: | http://hdl.handle.net/10757/660550 |
| Nivel de acceso: | acceso embargado |
| Materia: | Decision tree classifier Machine learning Nutrition Recommender system Scikit-Learn |
| id |
UUPC_a66c8727588a9266e4ff87b7c01c4bd9 |
|---|---|
| oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/660550 |
| network_acronym_str |
UUPC |
| network_name_str |
UPC-Institucional |
| repository_id_str |
2670 |
| dc.title.es_PE.fl_str_mv |
A decision tree–based classifier to provide nutritional plans recommendations |
| title |
A decision tree–based classifier to provide nutritional plans recommendations |
| spellingShingle |
A decision tree–based classifier to provide nutritional plans recommendations Aguilar-Loja, Omar Decision tree classifier Machine learning Nutrition Recommender system Scikit-Learn |
| title_short |
A decision tree–based classifier to provide nutritional plans recommendations |
| title_full |
A decision tree–based classifier to provide nutritional plans recommendations |
| title_fullStr |
A decision tree–based classifier to provide nutritional plans recommendations |
| title_full_unstemmed |
A decision tree–based classifier to provide nutritional plans recommendations |
| title_sort |
A decision tree–based classifier to provide nutritional plans recommendations |
| author |
Aguilar-Loja, Omar |
| author_facet |
Aguilar-Loja, Omar Dioses-Ojeda, Luis Armas-Aguirre, Jimmy Gonzalez, Paola A. |
| author_role |
author |
| author2 |
Dioses-Ojeda, Luis Armas-Aguirre, Jimmy Gonzalez, Paola A. |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Aguilar-Loja, Omar Dioses-Ojeda, Luis Armas-Aguirre, Jimmy Gonzalez, Paola A. |
| dc.subject.es_PE.fl_str_mv |
Decision tree classifier Machine learning Nutrition Recommender system Scikit-Learn |
| topic |
Decision tree classifier Machine learning Nutrition Recommender system Scikit-Learn |
| description |
The use of machine learning algorithms in the field of nutritional health is a topic that has been developed in recent years for the early diagnosis of diseases or the recommendation of better nutritional habits. People with poor diets are more prone to chronic diseases and, in the long term, this can lead to dead. This study proposes a model for the recommendation of nutritional plans using the decision tree technique considering the patient data, in complement with the BMI (Body Mass Index) and BMR (Basal Metabolic Rate) to evaluate and recommend the best nutritional plan for the patient. The algorithm used in the model was trained with a dataset of meal plan data assigned by specialists which were obtained from the Peruvian food composition table, and the data from the diets that were assigned and collected from the nutrition area of the Hospital Marino Molina Sccipa in Lima, Peru. Preliminary results of the experiment with the proposed algorithm show an accuracy of 78.95% allowing to provide accurate recommendations from a considerable amount of historical data. In a matter of seconds, these results were obtained using Scikit learn library. Finally, the accuracy of the algorithm has been proven, generating the necessary knowledge so that it can be used to create appropriate nutritional plans for patients and to improve the process of creating plans for the nutritionist. |
| publishDate |
2022 |
| dc.date.accessioned.none.fl_str_mv |
2022-08-07T22:18:41Z |
| dc.date.available.none.fl_str_mv |
2022-08-07T22:18:41Z |
| dc.date.issued.fl_str_mv |
2022-01-01 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.issn.none.fl_str_mv |
21660727 |
| dc.identifier.doi.none.fl_str_mv |
10.23919/CISTI54924.2022.9820144 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/660550 |
| dc.identifier.eissn.none.fl_str_mv |
21660735 |
| dc.identifier.journal.es_PE.fl_str_mv |
Iberian Conference on Information Systems and Technologies, CISTI |
| dc.identifier.eid.none.fl_str_mv |
2-s2.0-85134847328 |
| dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85134847328 |
| dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
| identifier_str_mv |
21660727 10.23919/CISTI54924.2022.9820144 21660735 Iberian Conference on Information Systems and Technologies, CISTI 2-s2.0-85134847328 SCOPUS_ID:85134847328 0000 0001 2196 144X |
| url |
http://hdl.handle.net/10757/660550 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.relation.url.es_PE.fl_str_mv |
https://ieeexplore.ieee.org/document/9820144 |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
| eu_rights_str_mv |
embargoedAccess |
| dc.format.es_PE.fl_str_mv |
application/html |
| dc.publisher.es_PE.fl_str_mv |
IEEE Computer Society |
| dc.source.es_PE.fl_str_mv |
Repositorio Academico - UPC Universidad Peruana de Ciencias Aplicadas (UPC) |
| dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
| instname_str |
Universidad Peruana de Ciencias Aplicadas |
| instacron_str |
UPC |
| institution |
UPC |
| reponame_str |
UPC-Institucional |
| collection |
UPC-Institucional |
| dc.source.journaltitle.none.fl_str_mv |
Iberian Conference on Information Systems and Technologies, CISTI |
| dc.source.volume.none.fl_str_mv |
2022-June |
| bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/660550/1/license.txt |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
| repository.name.fl_str_mv |
Repositorio académico upc |
| repository.mail.fl_str_mv |
upc@openrepository.com |
| _version_ |
1846065819171160064 |
| spelling |
842bb75df4400f00cf2324ebfe5a42973009c31ee1bcb3984b2f787d8b97e22eceb3004832ce656228b995761b32f4527dfa58e4535be22cd0a77060138a040eb5063b500Aguilar-Loja, OmarDioses-Ojeda, LuisArmas-Aguirre, JimmyGonzalez, Paola A.2022-08-07T22:18:41Z2022-08-07T22:18:41Z2022-01-012166072710.23919/CISTI54924.2022.9820144http://hdl.handle.net/10757/66055021660735Iberian Conference on Information Systems and Technologies, CISTI2-s2.0-85134847328SCOPUS_ID:851348473280000 0001 2196 144XThe use of machine learning algorithms in the field of nutritional health is a topic that has been developed in recent years for the early diagnosis of diseases or the recommendation of better nutritional habits. People with poor diets are more prone to chronic diseases and, in the long term, this can lead to dead. This study proposes a model for the recommendation of nutritional plans using the decision tree technique considering the patient data, in complement with the BMI (Body Mass Index) and BMR (Basal Metabolic Rate) to evaluate and recommend the best nutritional plan for the patient. The algorithm used in the model was trained with a dataset of meal plan data assigned by specialists which were obtained from the Peruvian food composition table, and the data from the diets that were assigned and collected from the nutrition area of the Hospital Marino Molina Sccipa in Lima, Peru. Preliminary results of the experiment with the proposed algorithm show an accuracy of 78.95% allowing to provide accurate recommendations from a considerable amount of historical data. In a matter of seconds, these results were obtained using Scikit learn library. Finally, the accuracy of the algorithm has been proven, generating the necessary knowledge so that it can be used to create appropriate nutritional plans for patients and to improve the process of creating plans for the nutritionist.Revisión por paresapplication/htmlengIEEE Computer Societyhttps://ieeexplore.ieee.org/document/9820144info:eu-repo/semantics/embargoedAccessRepositorio Academico - UPCUniversidad Peruana de Ciencias Aplicadas (UPC)Iberian Conference on Information Systems and Technologies, CISTI2022-Junereponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCDecision tree classifierMachine learningNutritionRecommender systemScikit-LearnA decision tree–based classifier to provide nutritional plans recommendationsinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/660550/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/660550oai:repositorioacademico.upc.edu.pe:10757/6605502022-08-07 22:18:42.4Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.905282 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).