A decision tree–based classifier to provide nutritional plans recommendations

Descripción del Articulo

The use of machine learning algorithms in the field of nutritional health is a topic that has been developed in recent years for the early diagnosis of diseases or the recommendation of better nutritional habits. People with poor diets are more prone to chronic diseases and, in the long term, this c...

Descripción completa

Detalles Bibliográficos
Autores: Aguilar-Loja, Omar, Dioses-Ojeda, Luis, Armas-Aguirre, Jimmy, Gonzalez, Paola A.
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/660550
Enlace del recurso:http://hdl.handle.net/10757/660550
Nivel de acceso:acceso embargado
Materia:Decision tree classifier
Machine learning
Nutrition
Recommender system
Scikit-Learn
id UUPC_a66c8727588a9266e4ff87b7c01c4bd9
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/660550
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv A decision tree–based classifier to provide nutritional plans recommendations
title A decision tree–based classifier to provide nutritional plans recommendations
spellingShingle A decision tree–based classifier to provide nutritional plans recommendations
Aguilar-Loja, Omar
Decision tree classifier
Machine learning
Nutrition
Recommender system
Scikit-Learn
title_short A decision tree–based classifier to provide nutritional plans recommendations
title_full A decision tree–based classifier to provide nutritional plans recommendations
title_fullStr A decision tree–based classifier to provide nutritional plans recommendations
title_full_unstemmed A decision tree–based classifier to provide nutritional plans recommendations
title_sort A decision tree–based classifier to provide nutritional plans recommendations
author Aguilar-Loja, Omar
author_facet Aguilar-Loja, Omar
Dioses-Ojeda, Luis
Armas-Aguirre, Jimmy
Gonzalez, Paola A.
author_role author
author2 Dioses-Ojeda, Luis
Armas-Aguirre, Jimmy
Gonzalez, Paola A.
author2_role author
author
author
dc.contributor.author.fl_str_mv Aguilar-Loja, Omar
Dioses-Ojeda, Luis
Armas-Aguirre, Jimmy
Gonzalez, Paola A.
dc.subject.es_PE.fl_str_mv Decision tree classifier
Machine learning
Nutrition
Recommender system
Scikit-Learn
topic Decision tree classifier
Machine learning
Nutrition
Recommender system
Scikit-Learn
description The use of machine learning algorithms in the field of nutritional health is a topic that has been developed in recent years for the early diagnosis of diseases or the recommendation of better nutritional habits. People with poor diets are more prone to chronic diseases and, in the long term, this can lead to dead. This study proposes a model for the recommendation of nutritional plans using the decision tree technique considering the patient data, in complement with the BMI (Body Mass Index) and BMR (Basal Metabolic Rate) to evaluate and recommend the best nutritional plan for the patient. The algorithm used in the model was trained with a dataset of meal plan data assigned by specialists which were obtained from the Peruvian food composition table, and the data from the diets that were assigned and collected from the nutrition area of the Hospital Marino Molina Sccipa in Lima, Peru. Preliminary results of the experiment with the proposed algorithm show an accuracy of 78.95% allowing to provide accurate recommendations from a considerable amount of historical data. In a matter of seconds, these results were obtained using Scikit learn library. Finally, the accuracy of the algorithm has been proven, generating the necessary knowledge so that it can be used to create appropriate nutritional plans for patients and to improve the process of creating plans for the nutritionist.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-07T22:18:41Z
dc.date.available.none.fl_str_mv 2022-08-07T22:18:41Z
dc.date.issued.fl_str_mv 2022-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.none.fl_str_mv 21660727
dc.identifier.doi.none.fl_str_mv 10.23919/CISTI54924.2022.9820144
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/660550
dc.identifier.eissn.none.fl_str_mv 21660735
dc.identifier.journal.es_PE.fl_str_mv Iberian Conference on Information Systems and Technologies, CISTI
dc.identifier.eid.none.fl_str_mv 2-s2.0-85134847328
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85134847328
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
identifier_str_mv 21660727
10.23919/CISTI54924.2022.9820144
21660735
Iberian Conference on Information Systems and Technologies, CISTI
2-s2.0-85134847328
SCOPUS_ID:85134847328
0000 0001 2196 144X
url http://hdl.handle.net/10757/660550
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.url.es_PE.fl_str_mv https://ieeexplore.ieee.org/document/9820144
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.es_PE.fl_str_mv application/html
dc.publisher.es_PE.fl_str_mv IEEE Computer Society
dc.source.es_PE.fl_str_mv Repositorio Academico - UPC
Universidad Peruana de Ciencias Aplicadas (UPC)
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Iberian Conference on Information Systems and Technologies, CISTI
dc.source.volume.none.fl_str_mv 2022-June
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/660550/1/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1846065819171160064
spelling 842bb75df4400f00cf2324ebfe5a42973009c31ee1bcb3984b2f787d8b97e22eceb3004832ce656228b995761b32f4527dfa58e4535be22cd0a77060138a040eb5063b500Aguilar-Loja, OmarDioses-Ojeda, LuisArmas-Aguirre, JimmyGonzalez, Paola A.2022-08-07T22:18:41Z2022-08-07T22:18:41Z2022-01-012166072710.23919/CISTI54924.2022.9820144http://hdl.handle.net/10757/66055021660735Iberian Conference on Information Systems and Technologies, CISTI2-s2.0-85134847328SCOPUS_ID:851348473280000 0001 2196 144XThe use of machine learning algorithms in the field of nutritional health is a topic that has been developed in recent years for the early diagnosis of diseases or the recommendation of better nutritional habits. People with poor diets are more prone to chronic diseases and, in the long term, this can lead to dead. This study proposes a model for the recommendation of nutritional plans using the decision tree technique considering the patient data, in complement with the BMI (Body Mass Index) and BMR (Basal Metabolic Rate) to evaluate and recommend the best nutritional plan for the patient. The algorithm used in the model was trained with a dataset of meal plan data assigned by specialists which were obtained from the Peruvian food composition table, and the data from the diets that were assigned and collected from the nutrition area of the Hospital Marino Molina Sccipa in Lima, Peru. Preliminary results of the experiment with the proposed algorithm show an accuracy of 78.95% allowing to provide accurate recommendations from a considerable amount of historical data. In a matter of seconds, these results were obtained using Scikit learn library. Finally, the accuracy of the algorithm has been proven, generating the necessary knowledge so that it can be used to create appropriate nutritional plans for patients and to improve the process of creating plans for the nutritionist.Revisión por paresapplication/htmlengIEEE Computer Societyhttps://ieeexplore.ieee.org/document/9820144info:eu-repo/semantics/embargoedAccessRepositorio Academico - UPCUniversidad Peruana de Ciencias Aplicadas (UPC)Iberian Conference on Information Systems and Technologies, CISTI2022-Junereponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCDecision tree classifierMachine learningNutritionRecommender systemScikit-LearnA decision tree–based classifier to provide nutritional plans recommendationsinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/660550/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/660550oai:repositorioacademico.upc.edu.pe:10757/6605502022-08-07 22:18:42.4Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.905282
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).