Real-Time CNN Based Facial Emotion Recognition Model for a Mobile Serious Game

Descripción del Articulo

Every year, the increase in human-computer interaction is noticeable. This brings with it the evolution of computer vision to improve this interaction to make it more efficient and effective. This paper presents a CNN-based emotion face recognition model capable to be executed on mobile devices, in...

Descripción completa

Detalles Bibliográficos
Autores: Anto-Chavez, Carolain, Maguiña-Bernuy, Richard, Ugarte, Willy
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/676066
Enlace del recurso:http://hdl.handle.net/10757/676066
Nivel de acceso:acceso abierto
Materia:Emotion
Expression
Facial
FER
Machine Learning
Mobile
Real-Time
Recognition
id UUPC_68795443a373fa520a2c6c1ec2a9b9d1
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/676066
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv Real-Time CNN Based Facial Emotion Recognition Model for a Mobile Serious Game
title Real-Time CNN Based Facial Emotion Recognition Model for a Mobile Serious Game
spellingShingle Real-Time CNN Based Facial Emotion Recognition Model for a Mobile Serious Game
Anto-Chavez, Carolain
Emotion
Expression
Facial
FER
Machine Learning
Mobile
Real-Time
Recognition
title_short Real-Time CNN Based Facial Emotion Recognition Model for a Mobile Serious Game
title_full Real-Time CNN Based Facial Emotion Recognition Model for a Mobile Serious Game
title_fullStr Real-Time CNN Based Facial Emotion Recognition Model for a Mobile Serious Game
title_full_unstemmed Real-Time CNN Based Facial Emotion Recognition Model for a Mobile Serious Game
title_sort Real-Time CNN Based Facial Emotion Recognition Model for a Mobile Serious Game
author Anto-Chavez, Carolain
author_facet Anto-Chavez, Carolain
Maguiña-Bernuy, Richard
Ugarte, Willy
author_role author
author2 Maguiña-Bernuy, Richard
Ugarte, Willy
author2_role author
author
dc.contributor.author.fl_str_mv Anto-Chavez, Carolain
Maguiña-Bernuy, Richard
Ugarte, Willy
dc.subject.es_PE.fl_str_mv Emotion
Expression
Facial
FER
Machine Learning
Mobile
Real-Time
Recognition
topic Emotion
Expression
Facial
FER
Machine Learning
Mobile
Real-Time
Recognition
description Every year, the increase in human-computer interaction is noticeable. This brings with it the evolution of computer vision to improve this interaction to make it more efficient and effective. This paper presents a CNN-based emotion face recognition model capable to be executed on mobile devices, in real time and with high accuracy. Different models implemented in other research are usually of large sizes, and although they obtained high accuracy, they fail to make predictions in an optimal time, which prevents a fluid interaction with the computer. To improve these, we have implemented a lightweight CNN model trained with the FER2013 dataset to obtain the prediction of seven basic emotions. Experimentation shows that our model achieves an accuracy of 66.52% in validation, can be stored in a 13.23MB file and achieves an average processing time of 14.39ms and 16.06ms, on a tablet and a phone, respectively..
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-10-08T15:19:54Z
dc.date.available.none.fl_str_mv 2024-10-08T15:19:54Z
dc.date.issued.fl_str_mv 2024-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.doi.none.fl_str_mv 10.5220/0012683800003699
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/676066
dc.identifier.eissn.none.fl_str_mv 21844984
dc.identifier.journal.es_PE.fl_str_mv International Conference on Information and Communication Technologies for Ageing Well and e-Health, ICT4AWE - Proceedings
dc.identifier.eid.none.fl_str_mv 2-s2.0-85193959213
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85193959213
identifier_str_mv 10.5220/0012683800003699
21844984
International Conference on Information and Communication Technologies for Ageing Well and e-Health, ICT4AWE - Proceedings
2-s2.0-85193959213
SCOPUS_ID:85193959213
url http://hdl.handle.net/10757/676066
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Science and Technology Publications, Lda.
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv International Conference on Information and Communication Technologies for Ageing Well and e-Health, ICT4AWE - Proceedings
dc.source.beginpage.none.fl_str_mv 84
dc.source.endpage.none.fl_str_mv 92
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/676066/5/126838.pdf.jpg
https://repositorioacademico.upc.edu.pe/bitstream/10757/676066/4/126838.pdf.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/676066/3/license.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/676066/2/license_rdf
https://repositorioacademico.upc.edu.pe/bitstream/10757/676066/1/126838.pdf
bitstream.checksum.fl_str_mv 1c4b3ba995124535fc71a4a4c0fd0c0d
17d48dd77cbc368d1c8227858a1ceefd
8a4605be74aa9ea9d79846c1fba20a33
4460e5956bc1d1639be9ae6146a50347
ab1225f7b59efcfaceb0c2572ea498f4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1837187181870841856
spelling 8202064f076e56cfea34c791117c67cf30035f13e1fd28af19d5d5692c5f1e1dbb4300533fd7e68213307170565ef90452257a500Anto-Chavez, CarolainMaguiña-Bernuy, RichardUgarte, Willy2024-10-08T15:19:54Z2024-10-08T15:19:54Z2024-01-0110.5220/0012683800003699http://hdl.handle.net/10757/67606621844984International Conference on Information and Communication Technologies for Ageing Well and e-Health, ICT4AWE - Proceedings2-s2.0-85193959213SCOPUS_ID:85193959213Every year, the increase in human-computer interaction is noticeable. This brings with it the evolution of computer vision to improve this interaction to make it more efficient and effective. This paper presents a CNN-based emotion face recognition model capable to be executed on mobile devices, in real time and with high accuracy. Different models implemented in other research are usually of large sizes, and although they obtained high accuracy, they fail to make predictions in an optimal time, which prevents a fluid interaction with the computer. To improve these, we have implemented a lightweight CNN model trained with the FER2013 dataset to obtain the prediction of seven basic emotions. Experimentation shows that our model achieves an accuracy of 66.52% in validation, can be stored in a 13.23MB file and achieves an average processing time of 14.39ms and 16.06ms, on a tablet and a phone, respectively..application/pdfengScience and Technology Publications, Lda.info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/EmotionExpressionFacialFERMachine LearningMobileReal-TimeRecognitionReal-Time CNN Based Facial Emotion Recognition Model for a Mobile Serious Gameinfo:eu-repo/semantics/articleInternational Conference on Information and Communication Technologies for Ageing Well and e-Health, ICT4AWE - Proceedings8492reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPC2024-10-08T15:19:56ZTHUMBNAIL126838.pdf.jpg126838.pdf.jpgGenerated Thumbnailimage/jpeg93474https://repositorioacademico.upc.edu.pe/bitstream/10757/676066/5/126838.pdf.jpg1c4b3ba995124535fc71a4a4c0fd0c0dMD55falseTEXT126838.pdf.txt126838.pdf.txtExtracted texttext/plain33156https://repositorioacademico.upc.edu.pe/bitstream/10757/676066/4/126838.pdf.txt17d48dd77cbc368d1c8227858a1ceefdMD54falseLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/676066/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorioacademico.upc.edu.pe/bitstream/10757/676066/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52falseORIGINAL126838.pdf126838.pdfapplication/pdf1926058https://repositorioacademico.upc.edu.pe/bitstream/10757/676066/1/126838.pdfab1225f7b59efcfaceb0c2572ea498f4MD51true10757/676066oai:repositorioacademico.upc.edu.pe:10757/6760662024-10-09 07:12:45.096Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.958958
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).