Real-Time CNN Based Facial Emotion Recognition Model for a Mobile Serious Game

Descripción del Articulo

Every year, the increase in human-computer interaction is noticeable. This brings with it the evolution of computer vision to improve this interaction to make it more efficient and effective. This paper presents a CNN-based emotion face recognition model capable to be executed on mobile devices, in...

Descripción completa

Detalles Bibliográficos
Autores: Anto-Chavez, Carolain, Maguiña-Bernuy, Richard, Ugarte, Willy
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/676066
Enlace del recurso:http://hdl.handle.net/10757/676066
Nivel de acceso:acceso abierto
Materia:Emotion
Expression
Facial
FER
Machine Learning
Mobile
Real-Time
Recognition
Descripción
Sumario:Every year, the increase in human-computer interaction is noticeable. This brings with it the evolution of computer vision to improve this interaction to make it more efficient and effective. This paper presents a CNN-based emotion face recognition model capable to be executed on mobile devices, in real time and with high accuracy. Different models implemented in other research are usually of large sizes, and although they obtained high accuracy, they fail to make predictions in an optimal time, which prevents a fluid interaction with the computer. To improve these, we have implemented a lightweight CNN model trained with the FER2013 dataset to obtain the prediction of seven basic emotions. Experimentation shows that our model achieves an accuracy of 66.52% in validation, can be stored in a 13.23MB file and achieves an average processing time of 14.39ms and 16.06ms, on a tablet and a phone, respectively..
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).