Deep Learning Algorithms in Chest Images for Pneumonia Detection
Descripción del Articulo
neumonia has become the respiratory disease that continuously causes deaths in the world; as a response to this serious problem, a literature review is performed to identify Deep Learning classification models for pneumonia detection with an accuracy higher than 95%. For the identification of the mo...
Autores: | , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2022 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/669236 |
Enlace del recurso: | http://hdl.handle.net/10757/669236 |
Nivel de acceso: | acceso embargado |
Materia: | chest images CNN Deep Learning architectures Pneumonia |
id |
UUPC_60b189b35a13a93dac219f898e8b45d5 |
---|---|
oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/669236 |
network_acronym_str |
UUPC |
network_name_str |
UPC-Institucional |
repository_id_str |
2670 |
dc.title.es_PE.fl_str_mv |
Deep Learning Algorithms in Chest Images for Pneumonia Detection |
title |
Deep Learning Algorithms in Chest Images for Pneumonia Detection |
spellingShingle |
Deep Learning Algorithms in Chest Images for Pneumonia Detection Porras, Fernando Tello chest images CNN Deep Learning architectures Pneumonia |
title_short |
Deep Learning Algorithms in Chest Images for Pneumonia Detection |
title_full |
Deep Learning Algorithms in Chest Images for Pneumonia Detection |
title_fullStr |
Deep Learning Algorithms in Chest Images for Pneumonia Detection |
title_full_unstemmed |
Deep Learning Algorithms in Chest Images for Pneumonia Detection |
title_sort |
Deep Learning Algorithms in Chest Images for Pneumonia Detection |
author |
Porras, Fernando Tello |
author_facet |
Porras, Fernando Tello Rodriguez, Ciro Rodriguez, Diego Lezama, Pedro Inquilla, Ricardo Pomachagua, Yuri |
author_role |
author |
author2 |
Rodriguez, Ciro Rodriguez, Diego Lezama, Pedro Inquilla, Ricardo Pomachagua, Yuri |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Porras, Fernando Tello Rodriguez, Ciro Rodriguez, Diego Lezama, Pedro Inquilla, Ricardo Pomachagua, Yuri |
dc.subject.es_PE.fl_str_mv |
chest images CNN Deep Learning architectures Pneumonia |
topic |
chest images CNN Deep Learning architectures Pneumonia |
description |
neumonia has become the respiratory disease that continuously causes deaths in the world; as a response to this serious problem, a literature review is performed to identify Deep Learning classification models for pneumonia detection with an accuracy higher than 95%. For the identification of the models, different architectures such as InceptionV3, MobileNet, MobileNetV2 Xception, VGG16, VGG19, DenseNet201, NasnetMobile, CNN, and LSTM were evaluated. Although they all show very acceptable accuracy indicators, which justifies their evaluation for model identification, the datasets were evaluated with chest X-ray images in different categories. As a result, it was determined that ResNet152V2 achieved an accuracy of 99.22%, which is considered one of the best models for pneumonia detection. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2023-11-07T16:44:40Z |
dc.date.available.none.fl_str_mv |
2023-11-07T16:44:40Z |
dc.date.issued.fl_str_mv |
2022-01-01 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.doi.none.fl_str_mv |
10.1109/CICN56167.2022.10008321 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/669236 |
dc.identifier.journal.es_PE.fl_str_mv |
Proceedings - 2022 14th IEEE International Conference on Computational Intelligence and Communication Networks, CICN 2022 |
dc.identifier.eid.none.fl_str_mv |
2-s2.0-85146841258 |
dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85146841258 |
dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
dc.identifier.ror.none.fl_str_mv |
047xrr705 |
identifier_str_mv |
10.1109/CICN56167.2022.10008321 Proceedings - 2022 14th IEEE International Conference on Computational Intelligence and Communication Networks, CICN 2022 2-s2.0-85146841258 SCOPUS_ID:85146841258 0000 0001 2196 144X 047xrr705 |
url |
http://hdl.handle.net/10757/669236 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.relation.url.es_PE.fl_str_mv |
https://ieeexplore.ieee.org/document/10008321 |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
embargoedAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.source.es_PE.fl_str_mv |
Universidad Peruana de Ciencias Aplicadas (UPC) Repositorio Academico - UPC |
dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
instname_str |
Universidad Peruana de Ciencias Aplicadas |
instacron_str |
UPC |
institution |
UPC |
reponame_str |
UPC-Institucional |
collection |
UPC-Institucional |
dc.source.journaltitle.none.fl_str_mv |
Proceedings - 2022 14th IEEE International Conference on Computational Intelligence and Communication Networks, CICN 2022 |
dc.source.beginpage.none.fl_str_mv |
442 |
dc.source.endpage.none.fl_str_mv |
447 |
bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/669236/2/license.txt https://repositorioacademico.upc.edu.pe/bitstream/10757/669236/1/license_rdf |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 934f4ca17e109e0a05eaeaba504d7ce4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio académico upc |
repository.mail.fl_str_mv |
upc@openrepository.com |
_version_ |
1837186812510994432 |
spelling |
ca58401d5e8a064ff19752cd3f62cd263001481cf04c578bc015c4403f7826ae2f28001a598412e418a24a4afd84d68f628500062a7deb0d67c2c464054d24853cd721500c283d35221508772733fdbd11e4fb3a1300040bf31ff65f6806d23fcaf71e9ea5d3500Porras, Fernando TelloRodriguez, CiroRodriguez, DiegoLezama, PedroInquilla, RicardoPomachagua, Yuri2023-11-07T16:44:40Z2023-11-07T16:44:40Z2022-01-0110.1109/CICN56167.2022.10008321http://hdl.handle.net/10757/669236Proceedings - 2022 14th IEEE International Conference on Computational Intelligence and Communication Networks, CICN 20222-s2.0-85146841258SCOPUS_ID:851468412580000 0001 2196 144X047xrr705neumonia has become the respiratory disease that continuously causes deaths in the world; as a response to this serious problem, a literature review is performed to identify Deep Learning classification models for pneumonia detection with an accuracy higher than 95%. For the identification of the models, different architectures such as InceptionV3, MobileNet, MobileNetV2 Xception, VGG16, VGG19, DenseNet201, NasnetMobile, CNN, and LSTM were evaluated. Although they all show very acceptable accuracy indicators, which justifies their evaluation for model identification, the datasets were evaluated with chest X-ray images in different categories. As a result, it was determined that ResNet152V2 achieved an accuracy of 99.22%, which is considered one of the best models for pneumonia detection.Revisión por paresapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.https://ieeexplore.ieee.org/document/10008321info:eu-repo/semantics/embargoedAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Universidad Peruana de Ciencias Aplicadas (UPC)Repositorio Academico - UPCProceedings - 2022 14th IEEE International Conference on Computational Intelligence and Communication Networks, CICN 2022442447reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCchest imagesCNNDeep Learning architecturesPneumoniaDeep Learning Algorithms in Chest Images for Pneumonia Detectioninfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/669236/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorioacademico.upc.edu.pe/bitstream/10757/669236/1/license_rdf934f4ca17e109e0a05eaeaba504d7ce4MD51false10757/669236oai:repositorioacademico.upc.edu.pe:10757/6692362023-11-07 16:44:41.84Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.95948 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).