Deep Learning Algorithms in Chest Images for Pneumonia Detection

Descripción del Articulo

neumonia has become the respiratory disease that continuously causes deaths in the world; as a response to this serious problem, a literature review is performed to identify Deep Learning classification models for pneumonia detection with an accuracy higher than 95%. For the identification of the mo...

Descripción completa

Detalles Bibliográficos
Autores: Porras, Fernando Tello, Rodriguez, Ciro, Rodriguez, Diego, Lezama, Pedro, Inquilla, Ricardo, Pomachagua, Yuri
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/669236
Enlace del recurso:http://hdl.handle.net/10757/669236
Nivel de acceso:acceso embargado
Materia:chest images
CNN
Deep Learning architectures
Pneumonia
id UUPC_60b189b35a13a93dac219f898e8b45d5
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/669236
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv Deep Learning Algorithms in Chest Images for Pneumonia Detection
title Deep Learning Algorithms in Chest Images for Pneumonia Detection
spellingShingle Deep Learning Algorithms in Chest Images for Pneumonia Detection
Porras, Fernando Tello
chest images
CNN
Deep Learning architectures
Pneumonia
title_short Deep Learning Algorithms in Chest Images for Pneumonia Detection
title_full Deep Learning Algorithms in Chest Images for Pneumonia Detection
title_fullStr Deep Learning Algorithms in Chest Images for Pneumonia Detection
title_full_unstemmed Deep Learning Algorithms in Chest Images for Pneumonia Detection
title_sort Deep Learning Algorithms in Chest Images for Pneumonia Detection
author Porras, Fernando Tello
author_facet Porras, Fernando Tello
Rodriguez, Ciro
Rodriguez, Diego
Lezama, Pedro
Inquilla, Ricardo
Pomachagua, Yuri
author_role author
author2 Rodriguez, Ciro
Rodriguez, Diego
Lezama, Pedro
Inquilla, Ricardo
Pomachagua, Yuri
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Porras, Fernando Tello
Rodriguez, Ciro
Rodriguez, Diego
Lezama, Pedro
Inquilla, Ricardo
Pomachagua, Yuri
dc.subject.es_PE.fl_str_mv chest images
CNN
Deep Learning architectures
Pneumonia
topic chest images
CNN
Deep Learning architectures
Pneumonia
description neumonia has become the respiratory disease that continuously causes deaths in the world; as a response to this serious problem, a literature review is performed to identify Deep Learning classification models for pneumonia detection with an accuracy higher than 95%. For the identification of the models, different architectures such as InceptionV3, MobileNet, MobileNetV2 Xception, VGG16, VGG19, DenseNet201, NasnetMobile, CNN, and LSTM were evaluated. Although they all show very acceptable accuracy indicators, which justifies their evaluation for model identification, the datasets were evaluated with chest X-ray images in different categories. As a result, it was determined that ResNet152V2 achieved an accuracy of 99.22%, which is considered one of the best models for pneumonia detection.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2023-11-07T16:44:40Z
dc.date.available.none.fl_str_mv 2023-11-07T16:44:40Z
dc.date.issued.fl_str_mv 2022-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.doi.none.fl_str_mv 10.1109/CICN56167.2022.10008321
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/669236
dc.identifier.journal.es_PE.fl_str_mv Proceedings - 2022 14th IEEE International Conference on Computational Intelligence and Communication Networks, CICN 2022
dc.identifier.eid.none.fl_str_mv 2-s2.0-85146841258
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85146841258
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
dc.identifier.ror.none.fl_str_mv 047xrr705
identifier_str_mv 10.1109/CICN56167.2022.10008321
Proceedings - 2022 14th IEEE International Conference on Computational Intelligence and Communication Networks, CICN 2022
2-s2.0-85146841258
SCOPUS_ID:85146841258
0000 0001 2196 144X
047xrr705
url http://hdl.handle.net/10757/669236
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.url.es_PE.fl_str_mv https://ieeexplore.ieee.org/document/10008321
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.*.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv embargoedAccess
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.es_PE.fl_str_mv Universidad Peruana de Ciencias Aplicadas (UPC)
Repositorio Academico - UPC
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Proceedings - 2022 14th IEEE International Conference on Computational Intelligence and Communication Networks, CICN 2022
dc.source.beginpage.none.fl_str_mv 442
dc.source.endpage.none.fl_str_mv 447
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/669236/2/license.txt
https://repositorioacademico.upc.edu.pe/bitstream/10757/669236/1/license_rdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
934f4ca17e109e0a05eaeaba504d7ce4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1837186812510994432
spelling ca58401d5e8a064ff19752cd3f62cd263001481cf04c578bc015c4403f7826ae2f28001a598412e418a24a4afd84d68f628500062a7deb0d67c2c464054d24853cd721500c283d35221508772733fdbd11e4fb3a1300040bf31ff65f6806d23fcaf71e9ea5d3500Porras, Fernando TelloRodriguez, CiroRodriguez, DiegoLezama, PedroInquilla, RicardoPomachagua, Yuri2023-11-07T16:44:40Z2023-11-07T16:44:40Z2022-01-0110.1109/CICN56167.2022.10008321http://hdl.handle.net/10757/669236Proceedings - 2022 14th IEEE International Conference on Computational Intelligence and Communication Networks, CICN 20222-s2.0-85146841258SCOPUS_ID:851468412580000 0001 2196 144X047xrr705neumonia has become the respiratory disease that continuously causes deaths in the world; as a response to this serious problem, a literature review is performed to identify Deep Learning classification models for pneumonia detection with an accuracy higher than 95%. For the identification of the models, different architectures such as InceptionV3, MobileNet, MobileNetV2 Xception, VGG16, VGG19, DenseNet201, NasnetMobile, CNN, and LSTM were evaluated. Although they all show very acceptable accuracy indicators, which justifies their evaluation for model identification, the datasets were evaluated with chest X-ray images in different categories. As a result, it was determined that ResNet152V2 achieved an accuracy of 99.22%, which is considered one of the best models for pneumonia detection.Revisión por paresapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.https://ieeexplore.ieee.org/document/10008321info:eu-repo/semantics/embargoedAccessAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/Universidad Peruana de Ciencias Aplicadas (UPC)Repositorio Academico - UPCProceedings - 2022 14th IEEE International Conference on Computational Intelligence and Communication Networks, CICN 2022442447reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCchest imagesCNNDeep Learning architecturesPneumoniaDeep Learning Algorithms in Chest Images for Pneumonia Detectioninfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/669236/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52falseCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorioacademico.upc.edu.pe/bitstream/10757/669236/1/license_rdf934f4ca17e109e0a05eaeaba504d7ce4MD51false10757/669236oai:repositorioacademico.upc.edu.pe:10757/6692362023-11-07 16:44:41.84Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.95948
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).