Exportación Completada — 

Deep Learning Algorithms in Chest Images for Pneumonia Detection

Descripción del Articulo

neumonia has become the respiratory disease that continuously causes deaths in the world; as a response to this serious problem, a literature review is performed to identify Deep Learning classification models for pneumonia detection with an accuracy higher than 95%. For the identification of the mo...

Descripción completa

Detalles Bibliográficos
Autores: Porras, Fernando Tello, Rodriguez, Ciro, Rodriguez, Diego, Lezama, Pedro, Inquilla, Ricardo, Pomachagua, Yuri
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/669236
Enlace del recurso:http://hdl.handle.net/10757/669236
Nivel de acceso:acceso embargado
Materia:chest images
CNN
Deep Learning architectures
Pneumonia
Descripción
Sumario:neumonia has become the respiratory disease that continuously causes deaths in the world; as a response to this serious problem, a literature review is performed to identify Deep Learning classification models for pneumonia detection with an accuracy higher than 95%. For the identification of the models, different architectures such as InceptionV3, MobileNet, MobileNetV2 Xception, VGG16, VGG19, DenseNet201, NasnetMobile, CNN, and LSTM were evaluated. Although they all show very acceptable accuracy indicators, which justifies their evaluation for model identification, the datasets were evaluated with chest X-ray images in different categories. As a result, it was determined that ResNet152V2 achieved an accuracy of 99.22%, which is considered one of the best models for pneumonia detection.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).