A Computational Comparative Analysis Between Nvidia Jetson Nano and Raspberry Pi CM4 for the Classification of White Asparagus with SVM

Descripción del Articulo

The following study proposes to analyze and compare the computational response provided by the Single Board Computers (SBC) Raspberry Pi CM4 and Nvidia Jetson Nano because those are important elements in machine learning applications and implementation of automated systems. Both were chosen due to t...

Descripción completa

Detalles Bibliográficos
Autores: Ruiz, Edgar, Ortiz, Manuel, Vinces, Leonardo
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/660554
Enlace del recurso:http://hdl.handle.net/10757/660554
Nivel de acceso:acceso embargado
Materia:Asparagus
Image processing
Jetson Nano
Raspberry Pi CM4
SBC
Support Vector Machine
id UUPC_3983e2d5033f649baa953bd200c656b3
oai_identifier_str oai:repositorioacademico.upc.edu.pe:10757/660554
network_acronym_str UUPC
network_name_str UPC-Institucional
repository_id_str 2670
dc.title.es_PE.fl_str_mv A Computational Comparative Analysis Between Nvidia Jetson Nano and Raspberry Pi CM4 for the Classification of White Asparagus with SVM
title A Computational Comparative Analysis Between Nvidia Jetson Nano and Raspberry Pi CM4 for the Classification of White Asparagus with SVM
spellingShingle A Computational Comparative Analysis Between Nvidia Jetson Nano and Raspberry Pi CM4 for the Classification of White Asparagus with SVM
Ruiz, Edgar
Asparagus
Image processing
Jetson Nano
Raspberry Pi CM4
SBC
Support Vector Machine
title_short A Computational Comparative Analysis Between Nvidia Jetson Nano and Raspberry Pi CM4 for the Classification of White Asparagus with SVM
title_full A Computational Comparative Analysis Between Nvidia Jetson Nano and Raspberry Pi CM4 for the Classification of White Asparagus with SVM
title_fullStr A Computational Comparative Analysis Between Nvidia Jetson Nano and Raspberry Pi CM4 for the Classification of White Asparagus with SVM
title_full_unstemmed A Computational Comparative Analysis Between Nvidia Jetson Nano and Raspberry Pi CM4 for the Classification of White Asparagus with SVM
title_sort A Computational Comparative Analysis Between Nvidia Jetson Nano and Raspberry Pi CM4 for the Classification of White Asparagus with SVM
author Ruiz, Edgar
author_facet Ruiz, Edgar
Ortiz, Manuel
Vinces, Leonardo
author_role author
author2 Ortiz, Manuel
Vinces, Leonardo
author2_role author
author
dc.contributor.author.fl_str_mv Ruiz, Edgar
Ortiz, Manuel
Vinces, Leonardo
dc.subject.es_PE.fl_str_mv Asparagus
Image processing
Jetson Nano
Raspberry Pi CM4
SBC
Support Vector Machine
topic Asparagus
Image processing
Jetson Nano
Raspberry Pi CM4
SBC
Support Vector Machine
description The following study proposes to analyze and compare the computational response provided by the Single Board Computers (SBC) Raspberry Pi CM4 and Nvidia Jetson Nano because those are important elements in machine learning applications and implementation of automated systems. Both were chosen due to their similar specifications to achieve a fair comparison. For the development of this research, an algorithm was implemented with a Support Vector Machine to be able to compare the performance in real-time of both computers based on performance metrics such as execution time, algorithm accuracy, CPU performance, and temperature. To validate results, there is a database of 2186 white asparagus images, which were classified based on attributes such as length, curvature, diameter, and purple hue. These attributes are established by the Peruvian Asparagus and Vegetable Institute (IPEH) in the Peruvian Technical Standard to ensure the quality of fresh asparagus for export. The algorithm has been designed to classify asparagus according to this technical standard.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-07T23:00:58Z
dc.date.available.none.fl_str_mv 2022-08-07T23:00:58Z
dc.date.issued.fl_str_mv 2022-01-01
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.issn.none.fl_str_mv 21903018
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-031-08545-1_49
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10757/660554
dc.identifier.eissn.none.fl_str_mv 21903026
dc.identifier.journal.es_PE.fl_str_mv Smart Innovation, Systems and Technologies
dc.identifier.eid.none.fl_str_mv 2-s2.0-85135098241
dc.identifier.scopusid.none.fl_str_mv SCOPUS_ID:85135098241
dc.identifier.isni.none.fl_str_mv 0000 0001 2196 144X
identifier_str_mv 21903018
10.1007/978-3-031-08545-1_49
21903026
Smart Innovation, Systems and Technologies
2-s2.0-85135098241
SCOPUS_ID:85135098241
0000 0001 2196 144X
url http://hdl.handle.net/10757/660554
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.url.es_PE.fl_str_mv https://link.springer.com/chapter/10.1007/978-3-031-08545-1_49
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.es_PE.fl_str_mv application/html
dc.publisher.es_PE.fl_str_mv Springer Science and Business Media Deutschland GmbH
dc.source.es_PE.fl_str_mv Universidad Peruana de Ciencias Aplicadas (UPC)
Repositorio Academico - UPC
dc.source.none.fl_str_mv reponame:UPC-Institucional
instname:Universidad Peruana de Ciencias Aplicadas
instacron:UPC
instname_str Universidad Peruana de Ciencias Aplicadas
instacron_str UPC
institution UPC
reponame_str UPC-Institucional
collection UPC-Institucional
dc.source.journaltitle.none.fl_str_mv Smart Innovation, Systems and Technologies
dc.source.volume.none.fl_str_mv 295 SIST
dc.source.beginpage.none.fl_str_mv 506
dc.source.endpage.none.fl_str_mv 513
bitstream.url.fl_str_mv https://repositorioacademico.upc.edu.pe/bitstream/10757/660554/1/license.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio académico upc
repository.mail.fl_str_mv upc@openrepository.com
_version_ 1846065819185840128
spelling 7ac057b1fa656a737f79cd8b9ae43024ba7ca876134d070e82324e4ea2d8c18460e18754863e92f130edcf7adad97c84500Ruiz, EdgarOrtiz, ManuelVinces, Leonardo2022-08-07T23:00:58Z2022-08-07T23:00:58Z2022-01-012190301810.1007/978-3-031-08545-1_49http://hdl.handle.net/10757/66055421903026Smart Innovation, Systems and Technologies2-s2.0-85135098241SCOPUS_ID:851350982410000 0001 2196 144XThe following study proposes to analyze and compare the computational response provided by the Single Board Computers (SBC) Raspberry Pi CM4 and Nvidia Jetson Nano because those are important elements in machine learning applications and implementation of automated systems. Both were chosen due to their similar specifications to achieve a fair comparison. For the development of this research, an algorithm was implemented with a Support Vector Machine to be able to compare the performance in real-time of both computers based on performance metrics such as execution time, algorithm accuracy, CPU performance, and temperature. To validate results, there is a database of 2186 white asparagus images, which were classified based on attributes such as length, curvature, diameter, and purple hue. These attributes are established by the Peruvian Asparagus and Vegetable Institute (IPEH) in the Peruvian Technical Standard to ensure the quality of fresh asparagus for export. The algorithm has been designed to classify asparagus according to this technical standard.application/htmlengSpringer Science and Business Media Deutschland GmbHhttps://link.springer.com/chapter/10.1007/978-3-031-08545-1_49info:eu-repo/semantics/embargoedAccessUniversidad Peruana de Ciencias Aplicadas (UPC)Repositorio Academico - UPCSmart Innovation, Systems and Technologies295 SIST506513reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCAsparagusImage processingJetson NanoRaspberry Pi CM4SBCSupport Vector MachineA Computational Comparative Analysis Between Nvidia Jetson Nano and Raspberry Pi CM4 for the Classification of White Asparagus with SVMinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/660554/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/660554oai:repositorioacademico.upc.edu.pe:10757/6605542022-08-07 23:00:59.651Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.893769
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).