A Computational Comparative Analysis Between Nvidia Jetson Nano and Raspberry Pi CM4 for the Classification of White Asparagus with SVM
Descripción del Articulo
The following study proposes to analyze and compare the computational response provided by the Single Board Computers (SBC) Raspberry Pi CM4 and Nvidia Jetson Nano because those are important elements in machine learning applications and implementation of automated systems. Both were chosen due to t...
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2022 |
| Institución: | Universidad Peruana de Ciencias Aplicadas |
| Repositorio: | UPC-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/660554 |
| Enlace del recurso: | http://hdl.handle.net/10757/660554 |
| Nivel de acceso: | acceso embargado |
| Materia: | Asparagus Image processing Jetson Nano Raspberry Pi CM4 SBC Support Vector Machine |
| id |
UUPC_3983e2d5033f649baa953bd200c656b3 |
|---|---|
| oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/660554 |
| network_acronym_str |
UUPC |
| network_name_str |
UPC-Institucional |
| repository_id_str |
2670 |
| dc.title.es_PE.fl_str_mv |
A Computational Comparative Analysis Between Nvidia Jetson Nano and Raspberry Pi CM4 for the Classification of White Asparagus with SVM |
| title |
A Computational Comparative Analysis Between Nvidia Jetson Nano and Raspberry Pi CM4 for the Classification of White Asparagus with SVM |
| spellingShingle |
A Computational Comparative Analysis Between Nvidia Jetson Nano and Raspberry Pi CM4 for the Classification of White Asparagus with SVM Ruiz, Edgar Asparagus Image processing Jetson Nano Raspberry Pi CM4 SBC Support Vector Machine |
| title_short |
A Computational Comparative Analysis Between Nvidia Jetson Nano and Raspberry Pi CM4 for the Classification of White Asparagus with SVM |
| title_full |
A Computational Comparative Analysis Between Nvidia Jetson Nano and Raspberry Pi CM4 for the Classification of White Asparagus with SVM |
| title_fullStr |
A Computational Comparative Analysis Between Nvidia Jetson Nano and Raspberry Pi CM4 for the Classification of White Asparagus with SVM |
| title_full_unstemmed |
A Computational Comparative Analysis Between Nvidia Jetson Nano and Raspberry Pi CM4 for the Classification of White Asparagus with SVM |
| title_sort |
A Computational Comparative Analysis Between Nvidia Jetson Nano and Raspberry Pi CM4 for the Classification of White Asparagus with SVM |
| author |
Ruiz, Edgar |
| author_facet |
Ruiz, Edgar Ortiz, Manuel Vinces, Leonardo |
| author_role |
author |
| author2 |
Ortiz, Manuel Vinces, Leonardo |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Ruiz, Edgar Ortiz, Manuel Vinces, Leonardo |
| dc.subject.es_PE.fl_str_mv |
Asparagus Image processing Jetson Nano Raspberry Pi CM4 SBC Support Vector Machine |
| topic |
Asparagus Image processing Jetson Nano Raspberry Pi CM4 SBC Support Vector Machine |
| description |
The following study proposes to analyze and compare the computational response provided by the Single Board Computers (SBC) Raspberry Pi CM4 and Nvidia Jetson Nano because those are important elements in machine learning applications and implementation of automated systems. Both were chosen due to their similar specifications to achieve a fair comparison. For the development of this research, an algorithm was implemented with a Support Vector Machine to be able to compare the performance in real-time of both computers based on performance metrics such as execution time, algorithm accuracy, CPU performance, and temperature. To validate results, there is a database of 2186 white asparagus images, which were classified based on attributes such as length, curvature, diameter, and purple hue. These attributes are established by the Peruvian Asparagus and Vegetable Institute (IPEH) in the Peruvian Technical Standard to ensure the quality of fresh asparagus for export. The algorithm has been designed to classify asparagus according to this technical standard. |
| publishDate |
2022 |
| dc.date.accessioned.none.fl_str_mv |
2022-08-07T23:00:58Z |
| dc.date.available.none.fl_str_mv |
2022-08-07T23:00:58Z |
| dc.date.issued.fl_str_mv |
2022-01-01 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.issn.none.fl_str_mv |
21903018 |
| dc.identifier.doi.none.fl_str_mv |
10.1007/978-3-031-08545-1_49 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/660554 |
| dc.identifier.eissn.none.fl_str_mv |
21903026 |
| dc.identifier.journal.es_PE.fl_str_mv |
Smart Innovation, Systems and Technologies |
| dc.identifier.eid.none.fl_str_mv |
2-s2.0-85135098241 |
| dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85135098241 |
| dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
| identifier_str_mv |
21903018 10.1007/978-3-031-08545-1_49 21903026 Smart Innovation, Systems and Technologies 2-s2.0-85135098241 SCOPUS_ID:85135098241 0000 0001 2196 144X |
| url |
http://hdl.handle.net/10757/660554 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.relation.url.es_PE.fl_str_mv |
https://link.springer.com/chapter/10.1007/978-3-031-08545-1_49 |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
| eu_rights_str_mv |
embargoedAccess |
| dc.format.es_PE.fl_str_mv |
application/html |
| dc.publisher.es_PE.fl_str_mv |
Springer Science and Business Media Deutschland GmbH |
| dc.source.es_PE.fl_str_mv |
Universidad Peruana de Ciencias Aplicadas (UPC) Repositorio Academico - UPC |
| dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
| instname_str |
Universidad Peruana de Ciencias Aplicadas |
| instacron_str |
UPC |
| institution |
UPC |
| reponame_str |
UPC-Institucional |
| collection |
UPC-Institucional |
| dc.source.journaltitle.none.fl_str_mv |
Smart Innovation, Systems and Technologies |
| dc.source.volume.none.fl_str_mv |
295 SIST |
| dc.source.beginpage.none.fl_str_mv |
506 |
| dc.source.endpage.none.fl_str_mv |
513 |
| bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/660554/1/license.txt |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
| repository.name.fl_str_mv |
Repositorio académico upc |
| repository.mail.fl_str_mv |
upc@openrepository.com |
| _version_ |
1846065819185840128 |
| spelling |
7ac057b1fa656a737f79cd8b9ae43024ba7ca876134d070e82324e4ea2d8c18460e18754863e92f130edcf7adad97c84500Ruiz, EdgarOrtiz, ManuelVinces, Leonardo2022-08-07T23:00:58Z2022-08-07T23:00:58Z2022-01-012190301810.1007/978-3-031-08545-1_49http://hdl.handle.net/10757/66055421903026Smart Innovation, Systems and Technologies2-s2.0-85135098241SCOPUS_ID:851350982410000 0001 2196 144XThe following study proposes to analyze and compare the computational response provided by the Single Board Computers (SBC) Raspberry Pi CM4 and Nvidia Jetson Nano because those are important elements in machine learning applications and implementation of automated systems. Both were chosen due to their similar specifications to achieve a fair comparison. For the development of this research, an algorithm was implemented with a Support Vector Machine to be able to compare the performance in real-time of both computers based on performance metrics such as execution time, algorithm accuracy, CPU performance, and temperature. To validate results, there is a database of 2186 white asparagus images, which were classified based on attributes such as length, curvature, diameter, and purple hue. These attributes are established by the Peruvian Asparagus and Vegetable Institute (IPEH) in the Peruvian Technical Standard to ensure the quality of fresh asparagus for export. The algorithm has been designed to classify asparagus according to this technical standard.application/htmlengSpringer Science and Business Media Deutschland GmbHhttps://link.springer.com/chapter/10.1007/978-3-031-08545-1_49info:eu-repo/semantics/embargoedAccessUniversidad Peruana de Ciencias Aplicadas (UPC)Repositorio Academico - UPCSmart Innovation, Systems and Technologies295 SIST506513reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPCAsparagusImage processingJetson NanoRaspberry Pi CM4SBCSupport Vector MachineA Computational Comparative Analysis Between Nvidia Jetson Nano and Raspberry Pi CM4 for the Classification of White Asparagus with SVMinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/660554/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/660554oai:repositorioacademico.upc.edu.pe:10757/6605542022-08-07 23:00:59.651Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.893769 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).