Determinación de variables que impiden a los alumnos inscribirse en el Programa Arizona - UPC
Descripción del Articulo
En el siguiente trabajo de investigación se utilizó la metodología de Ciencia de datos para buscar posibles soluciones al problema que tiene el programa de Arizona de la Universidad de Ciencias Aplicadas (UPC) ya que no se logra llegar a la meta de alumnos inscritos y admitidos a pesar de presentar...
Autores: | , , , , |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2021 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/658666 |
Enlace del recurso: | http://hdl.handle.net/10757/658666 |
Nivel de acceso: | acceso abierto |
Materia: | Ciencia de datos Arquitectura de datos Programa de Arizona Data science Data architecture Arizona Program http://purl.org/pe-repo/ocde/ford#5.00.00 https://purl.org/pe-repo/ocde/ford#5.02.04 |
Sumario: | En el siguiente trabajo de investigación se utilizó la metodología de Ciencia de datos para buscar posibles soluciones al problema que tiene el programa de Arizona de la Universidad de Ciencias Aplicadas (UPC) ya que no se logra llegar a la meta de alumnos inscritos y admitidos a pesar de presentar grandes beneficios en el aspecto profesional y educativo. Se analizó la data histórica de los años 2019, 2020 y 2021 la cual fue recolectada directamente de la universidad y se estableció el enfoque prescriptivo. Se identificaron las variables más relevantes de la base de datos como el nivel de inglés, la carrera elegida, el ingreso familiar promedio, entre otras, con la finalidad realizas el análisis descriptivo para crear visualizaciones y generar gráficos que muestren y nos ayuden a contar la historia. La arquitectura de datos se desarrolló con la finalidad de ver el proceso de análisis para que luego se pueda desarrollar e implementar un modelo que nos ayude a predecir el comportamiento de los alumnos frente al programa mediante el árbol de decisiones. Los resultados más resaltantes del estudio fueron que el nivel de inglés es una de las limitantes para la inscripción de los alumnos. Asimismo, el factor económico influye en la decisión, ya que es más probable que un alumno con ingreso promedio familiar mayor a 10,000.00 soles se matricule y, por último, que el modelo mediante el árbol de decisiones nos permite identificar si un alumno se matricula o no en el programa de Arizona. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).