A Strategy of Potential Fields and Neural Networks in the Control of an Autonomous Vehicle Within Dangerous Environments
Descripción del Articulo
This article focuses on the development of an autonomous navigation system by generating real-time 3D maps of different urban environments with different properties within simulation software. This system used the Pioneer 3-DX vehicle, a LiDAR sensor, GPS, and a gyroscope. For the elaboration of the...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2022 |
Institución: | Universidad Peruana de Ciencias Aplicadas |
Repositorio: | UPC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorioacademico.upc.edu.pe:10757/660562 |
Enlace del recurso: | http://hdl.handle.net/10757/660562 |
Nivel de acceso: | acceso embargado |
Materia: | 3D map Artificial potential fields Autonomous navigation Autonomous system LiDAR Neural networks UGV |
id |
UUPC_115c6dbfae3d28c47b439635a775077d |
---|---|
oai_identifier_str |
oai:repositorioacademico.upc.edu.pe:10757/660562 |
network_acronym_str |
UUPC |
network_name_str |
UPC-Institucional |
repository_id_str |
2670 |
dc.title.es_PE.fl_str_mv |
A Strategy of Potential Fields and Neural Networks in the Control of an Autonomous Vehicle Within Dangerous Environments |
title |
A Strategy of Potential Fields and Neural Networks in the Control of an Autonomous Vehicle Within Dangerous Environments |
spellingShingle |
A Strategy of Potential Fields and Neural Networks in the Control of an Autonomous Vehicle Within Dangerous Environments Chávez, Luisa 3D map Artificial potential fields Autonomous navigation Autonomous system LiDAR Neural networks UGV |
title_short |
A Strategy of Potential Fields and Neural Networks in the Control of an Autonomous Vehicle Within Dangerous Environments |
title_full |
A Strategy of Potential Fields and Neural Networks in the Control of an Autonomous Vehicle Within Dangerous Environments |
title_fullStr |
A Strategy of Potential Fields and Neural Networks in the Control of an Autonomous Vehicle Within Dangerous Environments |
title_full_unstemmed |
A Strategy of Potential Fields and Neural Networks in the Control of an Autonomous Vehicle Within Dangerous Environments |
title_sort |
A Strategy of Potential Fields and Neural Networks in the Control of an Autonomous Vehicle Within Dangerous Environments |
author |
Chávez, Luisa |
author_facet |
Chávez, Luisa Cortez, Angel Vinces, Leonardo |
author_role |
author |
author2 |
Cortez, Angel Vinces, Leonardo |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Chávez, Luisa Cortez, Angel Vinces, Leonardo |
dc.subject.es_PE.fl_str_mv |
3D map Artificial potential fields Autonomous navigation Autonomous system LiDAR Neural networks UGV |
topic |
3D map Artificial potential fields Autonomous navigation Autonomous system LiDAR Neural networks UGV |
description |
This article focuses on the development of an autonomous navigation system by generating real-time 3D maps of different urban environments with different properties within simulation software. This system used the Pioneer 3-DX vehicle, a LiDAR sensor, GPS, and a gyroscope. For the elaboration of the trajectory, the mathematical tool of artificial potential fields was used, which will generate an attractive field to a dynamic goal identified by the robot and repulsive to the obstacles present in the environment, recognized with great precision thanks to the use of a neural network. The topology neural network 8–16–32 was developed using forward propagation, reverse propagation, and gradient descent algorithms. By combining the tools of potential fields and neural networks, a path was traced through which the robotic system will be able to move freely under an off-center point kinematic control algorithm. Finally, a 3D map of the environment was obtained to provide information on the morphology and most outstanding characteristics of the deployment environment to users who use the system. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-08-08T01:59:59Z |
dc.date.available.none.fl_str_mv |
2022-08-08T01:59:59Z |
dc.date.issued.fl_str_mv |
2022-01-01 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.issn.none.fl_str_mv |
21903018 |
dc.identifier.doi.none.fl_str_mv |
10.1007/978-3-031-08545-1_43 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10757/660562 |
dc.identifier.eissn.none.fl_str_mv |
21903026 |
dc.identifier.journal.es_PE.fl_str_mv |
Smart Innovation, Systems and Technologies |
dc.identifier.eid.none.fl_str_mv |
2-s2.0-85135008074 |
dc.identifier.scopusid.none.fl_str_mv |
SCOPUS_ID:85135008074 |
dc.identifier.isni.none.fl_str_mv |
0000 0001 2196 144X |
identifier_str_mv |
21903018 10.1007/978-3-031-08545-1_43 21903026 Smart Innovation, Systems and Technologies 2-s2.0-85135008074 SCOPUS_ID:85135008074 0000 0001 2196 144X |
url |
http://hdl.handle.net/10757/660562 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.relation.url.es_PE.fl_str_mv |
https://link.springer.com/chapter/10.1007/978-3-031-08545-1_43 |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.es_PE.fl_str_mv |
application/html |
dc.publisher.es_PE.fl_str_mv |
Springer Science and Business Media Deutschland GmbH |
dc.source.es_PE.fl_str_mv |
Universidad Peruana de Ciencias Aplicadas (UPC) Repositorio Academico - UPC |
dc.source.none.fl_str_mv |
reponame:UPC-Institucional instname:Universidad Peruana de Ciencias Aplicadas instacron:UPC |
instname_str |
Universidad Peruana de Ciencias Aplicadas |
instacron_str |
UPC |
institution |
UPC |
reponame_str |
UPC-Institucional |
collection |
UPC-Institucional |
dc.source.journaltitle.none.fl_str_mv |
Smart Innovation, Systems and Technologies |
dc.source.volume.none.fl_str_mv |
295 SIST |
dc.source.beginpage.none.fl_str_mv |
452 |
dc.source.endpage.none.fl_str_mv |
460 |
bitstream.url.fl_str_mv |
https://repositorioacademico.upc.edu.pe/bitstream/10757/660562/1/license.txt |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio académico upc |
repository.mail.fl_str_mv |
upc@openrepository.com |
_version_ |
1837188486461915136 |
spelling |
f1a8a3b120f3130e1afc746aad7a4202300d032ff1289994d479c03a73fdbd8a29060e18754863e92f130edcf7adad97c84500Chávez, LuisaCortez, AngelVinces, Leonardo2022-08-08T01:59:59Z2022-08-08T01:59:59Z2022-01-012190301810.1007/978-3-031-08545-1_43http://hdl.handle.net/10757/66056221903026Smart Innovation, Systems and Technologies2-s2.0-85135008074SCOPUS_ID:851350080740000 0001 2196 144XThis article focuses on the development of an autonomous navigation system by generating real-time 3D maps of different urban environments with different properties within simulation software. This system used the Pioneer 3-DX vehicle, a LiDAR sensor, GPS, and a gyroscope. For the elaboration of the trajectory, the mathematical tool of artificial potential fields was used, which will generate an attractive field to a dynamic goal identified by the robot and repulsive to the obstacles present in the environment, recognized with great precision thanks to the use of a neural network. The topology neural network 8–16–32 was developed using forward propagation, reverse propagation, and gradient descent algorithms. By combining the tools of potential fields and neural networks, a path was traced through which the robotic system will be able to move freely under an off-center point kinematic control algorithm. Finally, a 3D map of the environment was obtained to provide information on the morphology and most outstanding characteristics of the deployment environment to users who use the system.application/htmlengSpringer Science and Business Media Deutschland GmbHhttps://link.springer.com/chapter/10.1007/978-3-031-08545-1_43info:eu-repo/semantics/embargoedAccessUniversidad Peruana de Ciencias Aplicadas (UPC)Repositorio Academico - UPCSmart Innovation, Systems and Technologies295 SIST452460reponame:UPC-Institucionalinstname:Universidad Peruana de Ciencias Aplicadasinstacron:UPC3D mapArtificial potential fieldsAutonomous navigationAutonomous systemLiDARNeural networksUGVA Strategy of Potential Fields and Neural Networks in the Control of an Autonomous Vehicle Within Dangerous Environmentsinfo:eu-repo/semantics/articleLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorioacademico.upc.edu.pe/bitstream/10757/660562/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51false10757/660562oai:repositorioacademico.upc.edu.pe:10757/6605622022-08-08 02:00:00.468Repositorio académico upcupc@openrepository.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.959421 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).