Exportación Completada — 

Artificial neural network model to predict student performance using nonpersonal information

Descripción del Articulo

In recent years, artificial intelligence has played an important role in education, wherein one of the most commonly used applications is forecasting students’ academic performance based on personal information such as social status, income, address, etc. This study proposes and develops an artifici...

Descripción completa

Detalles Bibliográficos
Autores: Chavez, Heyul, Chavez-Arias, Bill, Contreras-Rosas, Sebastian, Alvarez-Rodríguez, Jose María, Raymundo, Carlos
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Peruana de Ciencias Aplicadas
Repositorio:UPC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorioacademico.upc.edu.pe:10757/668167
Enlace del recurso:http://hdl.handle.net/10757/668167
Nivel de acceso:acceso abierto
Materia:academic performance
forecasting
neural networks
personal data
privacy
Artificial intelligence
Education
Student performance forecasting
Privacy considerations
Artificial neural network model
Data from The Open University
Number of course attempts
Course pass rate
Use of virtual materials
Model performance metrics
Descripción
Sumario:In recent years, artificial intelligence has played an important role in education, wherein one of the most commonly used applications is forecasting students’ academic performance based on personal information such as social status, income, address, etc. This study proposes and develops an artificial neural network model capable of determining whether a student will pass a certain class without using personal or sensitive information that may compromise student privacy. For model training, we used information regarding 32,000 students collected from The Open University of the United Kingdom, such as number of times they took the course, average number of evaluations, course pass rate, average use of virtual materials per date and number of clicks in virtual classrooms. Attributes selected for the model are as follows: 93.81% accuracy, 94.15% precision, 95.13% recall, and 94.64% F1-score. These results will help the student authorities to take measures to avoid withdrawal and underachievement.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).