Relación de inercias entre dos representaciones de subespacios lineales monótonos

Descripción del Articulo

Sabemos que un subespacio vectorial E ⊂ Rn x Rn puede ser expresado de dos formas distintas, como nUcleo y como imagen de transformaciones lineales, esto es E = {(x, x*) : Ax + Bx* = 0} y E = {(x, x*) : x = Pu, x* = Qu, u ϵ Rr} para algunas matrices A, B G Rpxn y P,Q G Rnxr. En este trabajo estudiar...

Descripción completa

Detalles Bibliográficos
Autor: Flores Luyo, Luis Ernesto
Formato: tesis de maestría
Fecha de Publicación:2015
Institución:Universidad Nacional de Ingeniería
Repositorio:UNI-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.uni.edu.pe:20.500.14076/12076
Enlace del recurso:http://hdl.handle.net/20.500.14076/12076
Nivel de acceso:acceso abierto
Materia:Subespacios lineales monótonos
Matemática aplicada
id UUNI_fad1620e436ab659b4c1ff48d522cffc
oai_identifier_str oai:cybertesis.uni.edu.pe:20.500.14076/12076
network_acronym_str UUNI
network_name_str UNI-Tesis
repository_id_str 1534
dc.title.es.fl_str_mv Relación de inercias entre dos representaciones de subespacios lineales monótonos
title Relación de inercias entre dos representaciones de subespacios lineales monótonos
spellingShingle Relación de inercias entre dos representaciones de subespacios lineales monótonos
Flores Luyo, Luis Ernesto
Subespacios lineales monótonos
Matemática aplicada
title_short Relación de inercias entre dos representaciones de subespacios lineales monótonos
title_full Relación de inercias entre dos representaciones de subespacios lineales monótonos
title_fullStr Relación de inercias entre dos representaciones de subespacios lineales monótonos
title_full_unstemmed Relación de inercias entre dos representaciones de subespacios lineales monótonos
title_sort Relación de inercias entre dos representaciones de subespacios lineales monótonos
dc.creator.none.fl_str_mv Flores Luyo, Luis Ernesto
author Flores Luyo, Luis Ernesto
author_facet Flores Luyo, Luis Ernesto
author_role author
dc.contributor.advisor.fl_str_mv Ocaña Anaya, Eladio Teófilo
dc.contributor.author.fl_str_mv Flores Luyo, Luis Ernesto
dc.subject.es.fl_str_mv Subespacios lineales monótonos
Matemática aplicada
topic Subespacios lineales monótonos
Matemática aplicada
description Sabemos que un subespacio vectorial E ⊂ Rn x Rn puede ser expresado de dos formas distintas, como nUcleo y como imagen de transformaciones lineales, esto es E = {(x, x*) : Ax + Bx* = 0} y E = {(x, x*) : x = Pu, x* = Qu, u ϵ Rr} para algunas matrices A, B G Rpxn y P,Q G Rnxr. En este trabajo estudiaremos la relación entre ambas representaciones cuando el subespacio E es considerado monótono. Se establecerá esta relación por medio de las inercias de las matrices simétricas (ABt + BAt) y (PtQ + QtP).
publishDate 2015
dc.date.accessioned.none.fl_str_mv 2018-06-19T21:06:36Z
dc.date.available.none.fl_str_mv 2018-06-19T21:06:36Z
dc.date.issued.fl_str_mv 2015
dc.type.es.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.14076/12076
url http://hdl.handle.net/20.500.14076/12076
dc.language.iso.es.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es.fl_str_mv application/pdf
dc.publisher.es.fl_str_mv Universidad Nacional de Ingeniería
dc.source.es.fl_str_mv Universidad Nacional de Ingeniería
Repositorio Institucional - UNI
dc.source.none.fl_str_mv reponame:UNI-Tesis
instname:Universidad Nacional de Ingeniería
instacron:UNI
instname_str Universidad Nacional de Ingeniería
instacron_str UNI
institution UNI
reponame_str UNI-Tesis
collection UNI-Tesis
bitstream.url.fl_str_mv http://cybertesis.uni.edu.pe/bitstream/20.500.14076/12076/3/flores_le.pdf.txt
http://cybertesis.uni.edu.pe/bitstream/20.500.14076/12076/2/license.txt
http://cybertesis.uni.edu.pe/bitstream/20.500.14076/12076/1/flores_le.pdf
bitstream.checksum.fl_str_mv dd14f1ebb5a23c6fbd27ef5087750b0c
8a4605be74aa9ea9d79846c1fba20a33
24f57b3d1b76acfe62ba9bab137da614
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - UNI
repository.mail.fl_str_mv repositorio@uni.edu.pe
_version_ 1840085524132397056
spelling Ocaña Anaya, Eladio TeófiloFlores Luyo, Luis ErnestoFlores Luyo, Luis Ernesto2018-06-19T21:06:36Z2018-06-19T21:06:36Z2015http://hdl.handle.net/20.500.14076/12076Sabemos que un subespacio vectorial E ⊂ Rn x Rn puede ser expresado de dos formas distintas, como nUcleo y como imagen de transformaciones lineales, esto es E = {(x, x*) : Ax + Bx* = 0} y E = {(x, x*) : x = Pu, x* = Qu, u ϵ Rr} para algunas matrices A, B G Rpxn y P,Q G Rnxr. En este trabajo estudiaremos la relación entre ambas representaciones cuando el subespacio E es considerado monótono. Se establecerá esta relación por medio de las inercias de las matrices simétricas (ABt + BAt) y (PtQ + QtP).Submitted by Omar Villeguez Acosta (omarcva@gmail.com) on 2018-06-19T21:06:36Z No. of bitstreams: 1 flores_le.pdf: 320579 bytes, checksum: 24f57b3d1b76acfe62ba9bab137da614 (MD5)Made available in DSpace on 2018-06-19T21:06:36Z (GMT). No. of bitstreams: 1 flores_le.pdf: 320579 bytes, checksum: 24f57b3d1b76acfe62ba9bab137da614 (MD5) Previous issue date: 2015Tesisapplication/pdfspaUniversidad Nacional de Ingenieríainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Universidad Nacional de IngenieríaRepositorio Institucional - UNIreponame:UNI-Tesisinstname:Universidad Nacional de Ingenieríainstacron:UNISubespacios lineales monótonosMatemática aplicadaRelación de inercias entre dos representaciones de subespacios lineales monótonosinfo:eu-repo/semantics/masterThesisSUNEDUMaestro en Ciencias con Mención en Matemática AplicadaUniversidad Nacional de Ingeniería. Facultad de Ciencias. Unidad de PosgradoMaestríaMaestría en Ciencias con Mención en Matemática AplicadaMaestríaTEXTflores_le.pdf.txtflores_le.pdf.txtExtracted texttext/plain38496http://cybertesis.uni.edu.pe/bitstream/20.500.14076/12076/3/flores_le.pdf.txtdd14f1ebb5a23c6fbd27ef5087750b0cMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://cybertesis.uni.edu.pe/bitstream/20.500.14076/12076/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALflores_le.pdfflores_le.pdfapplication/pdf320579http://cybertesis.uni.edu.pe/bitstream/20.500.14076/12076/1/flores_le.pdf24f57b3d1b76acfe62ba9bab137da614MD5120.500.14076/12076oai:cybertesis.uni.edu.pe:20.500.14076/120762019-08-21 15:32:41.768Repositorio Institucional - UNIrepositorio@uni.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.945474
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).