Clausuras de operadores monótonos en espacios vectoriales topológicos

Descripción del Articulo

Fitzpatrick en [1] demostró que todo operador monótono maximal es un operador re- presentable en espacios vectoriales topológicos. Por lema de Zorn, todo operador monótono tiene extensión monótona maximal; por lo tanto, todo operador monótono posee extensión representable y la menor de todas las ext...

Descripción completa

Detalles Bibliográficos
Autor: Santana Rosas, Carlos Alberto
Formato: tesis de grado
Fecha de Publicación:2022
Institución:Universidad Nacional de Ingeniería
Repositorio:UNI-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.uni.edu.pe:20.500.14076/22836
Enlace del recurso:http://hdl.handle.net/20.500.14076/22836
Nivel de acceso:acceso abierto
Materia:Operadores monótonos
Espacios vectoriales topológicos
https://purl.org/pe-repo/ocde/ford#1.01.02
Descripción
Sumario:Fitzpatrick en [1] demostró que todo operador monótono maximal es un operador re- presentable en espacios vectoriales topológicos. Por lema de Zorn, todo operador monótono tiene extensión monótona maximal; por lo tanto, todo operador monótono posee extensión representable y la menor de todas las extensiones representables es llamada la clausura representable. Por otro lado, la clausura polar monótona de un operador monótono, que la podemos ver como la intersección de todas las extensiones monótonas maximales, tiene la propiedad de ser representable y además contiene a la clausura representable. El objetivo de la tesis es saber cuándo estas dos clausuras son iguales en espacios vectoriales topológicos. Además, demostrar que estas dos clausuras son iguales, sin ninguna hipótesis, en espacios de dimensión finita.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).