Problema de valor inicial para un sistema dispersivo no lineal del tipo Benjamín Bona Mahony

Descripción del Articulo

En este trabajo de tesis, estudiaremos el sistema de ecuaciones no lineales dispersivas bajo el efecto de disipación (1 — µ2x) tu + 3Xu + a3Xu + upxu + vpxv = 0 (1 — µ2x) tv + a3Xu + 3Xu + vpxv + x (uvp) = 0 u (0) = φ (1) v (0) = ψ donde µ > 0, |a| < 1 y p ≥ 1 es un número entero....

Descripción completa

Detalles Bibliográficos
Autor: Sumire Qquenta, David Andrés
Formato: tesis de maestría
Fecha de Publicación:2016
Institución:Universidad Nacional de Ingeniería
Repositorio:UNI-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.uni.edu.pe:20.500.14076/5655
Enlace del recurso:http://hdl.handle.net/20.500.14076/5655
Nivel de acceso:acceso abierto
Materia:Sistema dispersivo no lineal del tipo Benjamin Bona Mahony
Transformada de Fourier
id UUNI_875f6986c58696dd95bdf5154483add9
oai_identifier_str oai:cybertesis.uni.edu.pe:20.500.14076/5655
network_acronym_str UUNI
network_name_str UNI-Tesis
repository_id_str 1534
dc.title.es.fl_str_mv Problema de valor inicial para un sistema dispersivo no lineal del tipo Benjamín Bona Mahony
title Problema de valor inicial para un sistema dispersivo no lineal del tipo Benjamín Bona Mahony
spellingShingle Problema de valor inicial para un sistema dispersivo no lineal del tipo Benjamín Bona Mahony
Sumire Qquenta, David Andrés
Sistema dispersivo no lineal del tipo Benjamin Bona Mahony
Transformada de Fourier
title_short Problema de valor inicial para un sistema dispersivo no lineal del tipo Benjamín Bona Mahony
title_full Problema de valor inicial para un sistema dispersivo no lineal del tipo Benjamín Bona Mahony
title_fullStr Problema de valor inicial para un sistema dispersivo no lineal del tipo Benjamín Bona Mahony
title_full_unstemmed Problema de valor inicial para un sistema dispersivo no lineal del tipo Benjamín Bona Mahony
title_sort Problema de valor inicial para un sistema dispersivo no lineal del tipo Benjamín Bona Mahony
dc.creator.none.fl_str_mv Sumire Qquenta, David Andrés
author Sumire Qquenta, David Andrés
author_facet Sumire Qquenta, David Andrés
author_role author
dc.contributor.advisor.fl_str_mv Alcántara Bode, Julio César
Mendoza Uribe, Aldo Alcides
dc.contributor.author.fl_str_mv Sumire Qquenta, David Andrés
dc.subject.es.fl_str_mv Sistema dispersivo no lineal del tipo Benjamin Bona Mahony
Transformada de Fourier
topic Sistema dispersivo no lineal del tipo Benjamin Bona Mahony
Transformada de Fourier
description En este trabajo de tesis, estudiaremos el sistema de ecuaciones no lineales dispersivas bajo el efecto de disipación (1 — µ2x) tu + 3Xu + a3Xu + upxu + vpxv = 0 (1 — µ2x) tv + a3Xu + 3Xu + vpxv + x (uvp) = 0 u (0) = φ (1) v (0) = ψ donde µ > 0, |a| < 1 y p ≥ 1 es un número entero. Nuestro objetivo es demostrar que el sistema dispersivo o problema de Cauchy, está bien formulado localmente y globalmente. Por esta razón vemos varias propiedades de las soluciones reales u (x, t), v (x, t) para x E R, t ≥ 0. El problema de Cauchy (1) es un sistema acoplado de dos ecuaciones generalizadas de tipo Benjamín - Bona Mahony.
publishDate 2016
dc.date.accessioned.none.fl_str_mv 2017-11-02T17:41:11Z
dc.date.available.none.fl_str_mv 2017-11-02T17:41:11Z
dc.date.issued.fl_str_mv 2016
dc.type.es.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.14076/5655
url http://hdl.handle.net/20.500.14076/5655
dc.language.iso.es.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es.fl_str_mv application/pdf
dc.publisher.es.fl_str_mv Universidad Nacional de Ingeniería
dc.source.es.fl_str_mv Universidad Nacional de Ingeniería
Repositorio Institucional - UNI
dc.source.none.fl_str_mv reponame:UNI-Tesis
instname:Universidad Nacional de Ingeniería
instacron:UNI
instname_str Universidad Nacional de Ingeniería
instacron_str UNI
institution UNI
reponame_str UNI-Tesis
collection UNI-Tesis
bitstream.url.fl_str_mv http://cybertesis.uni.edu.pe/bitstream/20.500.14076/5655/3/sumire_qd.pdf.txt
http://cybertesis.uni.edu.pe/bitstream/20.500.14076/5655/2/license.txt
http://cybertesis.uni.edu.pe/bitstream/20.500.14076/5655/1/sumire_qd.pdf
bitstream.checksum.fl_str_mv 5589eba5daec85d4adc02ef7bacf8f3b
8a4605be74aa9ea9d79846c1fba20a33
a05b13f8f64f7de8afe911337942c272
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - UNI
repository.mail.fl_str_mv repositorio@uni.edu.pe
_version_ 1840085492822966272
spelling Alcántara Bode, Julio CésarMendoza Uribe, Aldo AlcidesSumire Qquenta, David AndrésSumire Qquenta, David Andrés2017-11-02T17:41:11Z2017-11-02T17:41:11Z2016http://hdl.handle.net/20.500.14076/5655En este trabajo de tesis, estudiaremos el sistema de ecuaciones no lineales dispersivas bajo el efecto de disipación (1 — µ2x) tu + 3Xu + a3Xu + upxu + vpxv = 0 (1 — µ2x) tv + a3Xu + 3Xu + vpxv + x (uvp) = 0 u (0) = φ (1) v (0) = ψ donde µ > 0, |a| < 1 y p ≥ 1 es un número entero. Nuestro objetivo es demostrar que el sistema dispersivo o problema de Cauchy, está bien formulado localmente y globalmente. Por esta razón vemos varias propiedades de las soluciones reales u (x, t), v (x, t) para x E R, t ≥ 0. El problema de Cauchy (1) es un sistema acoplado de dos ecuaciones generalizadas de tipo Benjamín - Bona Mahony.In this work of investigation, we will study the equations nonlinear system of dispersive under the dissipation effect (1 — µ2x) tu + 3Xu + a3Xu + upxu + vpxv = 0 (1 — µ2x) tv + a3Xu + 3Xu + vpxv + x (uvp) = 0 u (0) = φ (1) v (0) = ψ where donde µ > 0, |a| < 1 and p ≥ 1, it is an integer number. Our objective is to demonstrate that the dispersive system or the problem of Cauchy, is locally and globally good formulated. For this reason, we will see several properties of the real solutions u (x, t), v (x, t) for all x E R, t ≥ 0. The problem of Cauchy (1) is a system coupling of two equations generalize of tipe Benjamin - Bona Mahony.Submitted by luis oncebay lazo (luis11_182@hotmail.com) on 2017-11-02T17:41:11Z No. of bitstreams: 1 sumire_qd.pdf: 549324 bytes, checksum: a05b13f8f64f7de8afe911337942c272 (MD5)Made available in DSpace on 2017-11-02T17:41:11Z (GMT). No. of bitstreams: 1 sumire_qd.pdf: 549324 bytes, checksum: a05b13f8f64f7de8afe911337942c272 (MD5) Previous issue date: 2016Tesisapplication/pdfspaUniversidad Nacional de Ingenieríainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Universidad Nacional de IngenieríaRepositorio Institucional - UNIreponame:UNI-Tesisinstname:Universidad Nacional de Ingenieríainstacron:UNISistema dispersivo no lineal del tipo Benjamin Bona MahonyTransformada de FourierProblema de valor inicial para un sistema dispersivo no lineal del tipo Benjamín Bona Mahonyinfo:eu-repo/semantics/masterThesisSUNEDUMaestro en Ciencias con Mención en Matemática AplicadaUniversidad Nacional de Ingeniería. Facultad de Ciencias. Unidad de PosgradoMaestríaMaestría en Ciencias con Mención en Matemática AplicadaMaestríaTEXTsumire_qd.pdf.txtsumire_qd.pdf.txtExtracted texttext/plain68137http://cybertesis.uni.edu.pe/bitstream/20.500.14076/5655/3/sumire_qd.pdf.txt5589eba5daec85d4adc02ef7bacf8f3bMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://cybertesis.uni.edu.pe/bitstream/20.500.14076/5655/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALsumire_qd.pdfsumire_qd.pdfapplication/pdf549324http://cybertesis.uni.edu.pe/bitstream/20.500.14076/5655/1/sumire_qd.pdfa05b13f8f64f7de8afe911337942c272MD5120.500.14076/5655oai:cybertesis.uni.edu.pe:20.500.14076/56552020-10-27 08:05:22.074Repositorio Institucional - UNIrepositorio@uni.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.945474
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).