Problema de valor inicial para un sistema dispersivo no lineal del tipo Benjamín Bona Mahony
Descripción del Articulo
En este trabajo de tesis, estudiaremos el sistema de ecuaciones no lineales dispersivas bajo el efecto de disipación (1 — µ2x) tu + 3Xu + a3Xu + upxu + vpxv = 0 (1 — µ2x) tv + a3Xu + 3Xu + vpxv + x (uvp) = 0 u (0) = φ (1) v (0) = ψ donde µ > 0, |a| < 1 y p ≥ 1 es un número entero....
| Autor: | |
|---|---|
| Formato: | tesis de maestría |
| Fecha de Publicación: | 2016 |
| Institución: | Universidad Nacional de Ingeniería |
| Repositorio: | UNI-Tesis |
| Lenguaje: | español |
| OAI Identifier: | oai:cybertesis.uni.edu.pe:20.500.14076/5655 |
| Enlace del recurso: | http://hdl.handle.net/20.500.14076/5655 |
| Nivel de acceso: | acceso abierto |
| Materia: | Sistema dispersivo no lineal del tipo Benjamin Bona Mahony Transformada de Fourier |
| id |
UUNI_875f6986c58696dd95bdf5154483add9 |
|---|---|
| oai_identifier_str |
oai:cybertesis.uni.edu.pe:20.500.14076/5655 |
| network_acronym_str |
UUNI |
| network_name_str |
UNI-Tesis |
| repository_id_str |
1534 |
| dc.title.es.fl_str_mv |
Problema de valor inicial para un sistema dispersivo no lineal del tipo Benjamín Bona Mahony |
| title |
Problema de valor inicial para un sistema dispersivo no lineal del tipo Benjamín Bona Mahony |
| spellingShingle |
Problema de valor inicial para un sistema dispersivo no lineal del tipo Benjamín Bona Mahony Sumire Qquenta, David Andrés Sistema dispersivo no lineal del tipo Benjamin Bona Mahony Transformada de Fourier |
| title_short |
Problema de valor inicial para un sistema dispersivo no lineal del tipo Benjamín Bona Mahony |
| title_full |
Problema de valor inicial para un sistema dispersivo no lineal del tipo Benjamín Bona Mahony |
| title_fullStr |
Problema de valor inicial para un sistema dispersivo no lineal del tipo Benjamín Bona Mahony |
| title_full_unstemmed |
Problema de valor inicial para un sistema dispersivo no lineal del tipo Benjamín Bona Mahony |
| title_sort |
Problema de valor inicial para un sistema dispersivo no lineal del tipo Benjamín Bona Mahony |
| dc.creator.none.fl_str_mv |
Sumire Qquenta, David Andrés |
| author |
Sumire Qquenta, David Andrés |
| author_facet |
Sumire Qquenta, David Andrés |
| author_role |
author |
| dc.contributor.advisor.fl_str_mv |
Alcántara Bode, Julio César Mendoza Uribe, Aldo Alcides |
| dc.contributor.author.fl_str_mv |
Sumire Qquenta, David Andrés |
| dc.subject.es.fl_str_mv |
Sistema dispersivo no lineal del tipo Benjamin Bona Mahony Transformada de Fourier |
| topic |
Sistema dispersivo no lineal del tipo Benjamin Bona Mahony Transformada de Fourier |
| description |
En este trabajo de tesis, estudiaremos el sistema de ecuaciones no lineales dispersivas bajo el efecto de disipación (1 — µ2x) tu + 3Xu + a3Xu + upxu + vpxv = 0 (1 — µ2x) tv + a3Xu + 3Xu + vpxv + x (uvp) = 0 u (0) = φ (1) v (0) = ψ donde µ > 0, |a| < 1 y p ≥ 1 es un número entero. Nuestro objetivo es demostrar que el sistema dispersivo o problema de Cauchy, está bien formulado localmente y globalmente. Por esta razón vemos varias propiedades de las soluciones reales u (x, t), v (x, t) para x E R, t ≥ 0. El problema de Cauchy (1) es un sistema acoplado de dos ecuaciones generalizadas de tipo Benjamín - Bona Mahony. |
| publishDate |
2016 |
| dc.date.accessioned.none.fl_str_mv |
2017-11-02T17:41:11Z |
| dc.date.available.none.fl_str_mv |
2017-11-02T17:41:11Z |
| dc.date.issued.fl_str_mv |
2016 |
| dc.type.es.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.14076/5655 |
| url |
http://hdl.handle.net/20.500.14076/5655 |
| dc.language.iso.es.fl_str_mv |
spa |
| language |
spa |
| dc.relation.ispartof.fl_str_mv |
SUNEDU |
| dc.rights.es.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.es.fl_str_mv |
application/pdf |
| dc.publisher.es.fl_str_mv |
Universidad Nacional de Ingeniería |
| dc.source.es.fl_str_mv |
Universidad Nacional de Ingeniería Repositorio Institucional - UNI |
| dc.source.none.fl_str_mv |
reponame:UNI-Tesis instname:Universidad Nacional de Ingeniería instacron:UNI |
| instname_str |
Universidad Nacional de Ingeniería |
| instacron_str |
UNI |
| institution |
UNI |
| reponame_str |
UNI-Tesis |
| collection |
UNI-Tesis |
| bitstream.url.fl_str_mv |
http://cybertesis.uni.edu.pe/bitstream/20.500.14076/5655/3/sumire_qd.pdf.txt http://cybertesis.uni.edu.pe/bitstream/20.500.14076/5655/2/license.txt http://cybertesis.uni.edu.pe/bitstream/20.500.14076/5655/1/sumire_qd.pdf |
| bitstream.checksum.fl_str_mv |
5589eba5daec85d4adc02ef7bacf8f3b 8a4605be74aa9ea9d79846c1fba20a33 a05b13f8f64f7de8afe911337942c272 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional - UNI |
| repository.mail.fl_str_mv |
repositorio@uni.edu.pe |
| _version_ |
1840085492822966272 |
| spelling |
Alcántara Bode, Julio CésarMendoza Uribe, Aldo AlcidesSumire Qquenta, David AndrésSumire Qquenta, David Andrés2017-11-02T17:41:11Z2017-11-02T17:41:11Z2016http://hdl.handle.net/20.500.14076/5655En este trabajo de tesis, estudiaremos el sistema de ecuaciones no lineales dispersivas bajo el efecto de disipación (1 — µ2x) tu + 3Xu + a3Xu + upxu + vpxv = 0 (1 — µ2x) tv + a3Xu + 3Xu + vpxv + x (uvp) = 0 u (0) = φ (1) v (0) = ψ donde µ > 0, |a| < 1 y p ≥ 1 es un número entero. Nuestro objetivo es demostrar que el sistema dispersivo o problema de Cauchy, está bien formulado localmente y globalmente. Por esta razón vemos varias propiedades de las soluciones reales u (x, t), v (x, t) para x E R, t ≥ 0. El problema de Cauchy (1) es un sistema acoplado de dos ecuaciones generalizadas de tipo Benjamín - Bona Mahony.In this work of investigation, we will study the equations nonlinear system of dispersive under the dissipation effect (1 — µ2x) tu + 3Xu + a3Xu + upxu + vpxv = 0 (1 — µ2x) tv + a3Xu + 3Xu + vpxv + x (uvp) = 0 u (0) = φ (1) v (0) = ψ where donde µ > 0, |a| < 1 and p ≥ 1, it is an integer number. Our objective is to demonstrate that the dispersive system or the problem of Cauchy, is locally and globally good formulated. For this reason, we will see several properties of the real solutions u (x, t), v (x, t) for all x E R, t ≥ 0. The problem of Cauchy (1) is a system coupling of two equations generalize of tipe Benjamin - Bona Mahony.Submitted by luis oncebay lazo (luis11_182@hotmail.com) on 2017-11-02T17:41:11Z No. of bitstreams: 1 sumire_qd.pdf: 549324 bytes, checksum: a05b13f8f64f7de8afe911337942c272 (MD5)Made available in DSpace on 2017-11-02T17:41:11Z (GMT). No. of bitstreams: 1 sumire_qd.pdf: 549324 bytes, checksum: a05b13f8f64f7de8afe911337942c272 (MD5) Previous issue date: 2016Tesisapplication/pdfspaUniversidad Nacional de Ingenieríainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Universidad Nacional de IngenieríaRepositorio Institucional - UNIreponame:UNI-Tesisinstname:Universidad Nacional de Ingenieríainstacron:UNISistema dispersivo no lineal del tipo Benjamin Bona MahonyTransformada de FourierProblema de valor inicial para un sistema dispersivo no lineal del tipo Benjamín Bona Mahonyinfo:eu-repo/semantics/masterThesisSUNEDUMaestro en Ciencias con Mención en Matemática AplicadaUniversidad Nacional de Ingeniería. Facultad de Ciencias. Unidad de PosgradoMaestríaMaestría en Ciencias con Mención en Matemática AplicadaMaestríaTEXTsumire_qd.pdf.txtsumire_qd.pdf.txtExtracted texttext/plain68137http://cybertesis.uni.edu.pe/bitstream/20.500.14076/5655/3/sumire_qd.pdf.txt5589eba5daec85d4adc02ef7bacf8f3bMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://cybertesis.uni.edu.pe/bitstream/20.500.14076/5655/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALsumire_qd.pdfsumire_qd.pdfapplication/pdf549324http://cybertesis.uni.edu.pe/bitstream/20.500.14076/5655/1/sumire_qd.pdfa05b13f8f64f7de8afe911337942c272MD5120.500.14076/5655oai:cybertesis.uni.edu.pe:20.500.14076/56552020-10-27 08:05:22.074Repositorio Institucional - UNIrepositorio@uni.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.945474 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).