Problema de valor inicial para un sistema dispersivo no lineal del tipo Benjamín Bona Mahony

Descripción del Articulo

En este trabajo de tesis, estudiaremos el sistema de ecuaciones no lineales dispersivas bajo el efecto de disipación (1 — µ2x) tu + 3Xu + a3Xu + upxu + vpxv = 0 (1 — µ2x) tv + a3Xu + 3Xu + vpxv + x (uvp) = 0 u (0) = φ (1) v (0) = ψ donde µ > 0, |a| < 1 y p ≥ 1 es un número entero....

Descripción completa

Detalles Bibliográficos
Autor: Sumire Qquenta, David Andrés
Formato: tesis de maestría
Fecha de Publicación:2016
Institución:Universidad Nacional de Ingeniería
Repositorio:UNI-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.uni.edu.pe:20.500.14076/5655
Enlace del recurso:http://hdl.handle.net/20.500.14076/5655
Nivel de acceso:acceso abierto
Materia:Sistema dispersivo no lineal del tipo Benjamin Bona Mahony
Transformada de Fourier
Descripción
Sumario:En este trabajo de tesis, estudiaremos el sistema de ecuaciones no lineales dispersivas bajo el efecto de disipación (1 — µ2x) tu + 3Xu + a3Xu + upxu + vpxv = 0 (1 — µ2x) tv + a3Xu + 3Xu + vpxv + x (uvp) = 0 u (0) = φ (1) v (0) = ψ donde µ > 0, |a| < 1 y p ≥ 1 es un número entero. Nuestro objetivo es demostrar que el sistema dispersivo o problema de Cauchy, está bien formulado localmente y globalmente. Por esta razón vemos varias propiedades de las soluciones reales u (x, t), v (x, t) para x E R, t ≥ 0. El problema de Cauchy (1) es un sistema acoplado de dos ecuaciones generalizadas de tipo Benjamín - Bona Mahony.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).