Estudio de predicción de flujo de tráfico a corto plazo basado en el filtro de Kalman y la transformación Wavelet

Descripción del Articulo

La predicción del flujo de tráfico a corto plazo es un componente importante para el desarrollo de aplicaciones proactivas en los sistemas inteligentes de transporte (ITS). En especial es importante para los sistemas de control y gestión de tráfico dado que estos mejoran la eficacia y seguridad de l...

Descripción completa

Detalles Bibliográficos
Autor: Valdivia Huerta, Henry Christhian
Formato: tesis de grado
Fecha de Publicación:2020
Institución:Universidad Nacional de Ingeniería
Repositorio:UNI-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.uni.edu.pe:20.500.14076/21724
Enlace del recurso:http://hdl.handle.net/20.500.14076/21724
Nivel de acceso:acceso abierto
Materia:Sistema de transporte
Flujo de tráfico
Filtro de Kalman
Transformación Wavelet
Sistemas Inteligentes de Transportes (SIT)
https://purl.org/pe-repo/ocde/ford#2.01.01
Descripción
Sumario:La predicción del flujo de tráfico a corto plazo es un componente importante para el desarrollo de aplicaciones proactivas en los sistemas inteligentes de transporte (ITS). En especial es importante para los sistemas de control y gestión de tráfico dado que estos mejoran la eficacia y seguridad de las operaciones de tráfico, pero debido a la naturaleza estocástica del proceso que gobierna el flujo de tráfico, es una tarea desafiante encontrar algoritmos de predicción que sean precisos y robustos. La tarea se complica más debido a la falta de disponibilidad de datos en gran parte de los sistemas de transporte de los países en vías de desarrollo. La presente tesis propone y estudia un método de predicción de flujo de tráfico a corto plazo basado en el filtro de Kalman y la transformada wavelet discreta con una base de datos limitada de dos días de observación. El análisis wavelet discreto mediante la técnica de umbralización de coeficientes ayuda a filtrar o reducir el ruido que contienen los datos y el filtro de Kalman proyecta el flujo de tráfico un intervalo de tiempo discreto hacia el futuro con base en los datos filtrados. Ambos procesos de filtrado y proyección son integrados en un sólo proceso recursivo en tiempo real. Se estudia la influencia en la precisión de predicción de 1) diferentes tipos de coeficientes que puede integrar el vector de estado del sistema, 2) el tipo de filtro de Kalman empleado (convencional o adaptativo), y 3) la activación (si o no) del filtrado de ruido dentro del proceso de predicción. En total se tiene tres parámetros cuya variación en conjunto genera doce modelos de predicción. La evaluación del desempeño de predicción de los modelos se realizó bajo condiciones normales y disruptivas de tráfico. Se concluye de la investigación que el proceso de filtrado de ruido mejora notablemente el desempeño de la predicción bajo condiciones normales de tráfico. Sin embargo, esto empeora bajo condiciones disruptivas. Los modelos de predicción basados exclusivamente en el filtro de Kalman adaptativo son los más robustos del conjunto de modelos frente a cualquier condición de tráfico y su precisión de predicción varía de acuerdo al tipo de vector de estado empleado.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).