Determinación del mejor estimador de la pobreza monetaria entre cinco métodos de área pequeña (SAE) mediante experimentos de Montecarlo y remuestreo de Jackknife y Boostrap en el período 2012-2013

Descripción del Articulo

El propósito de este trabajo es estimar y comparar la precisión del indicador de pobreza monetaria en base a 5 metodologías de áreas menores o también conocido como SAE (Small Area Estimation) en los 24 departamentos y en la Provincia Constitucional del Callao para el periodo de años 2012 y 2013, ut...

Descripción completa

Detalles Bibliográficos
Autor: Suárez Inocente, Michel Steve
Formato: tesis de grado
Fecha de Publicación:2016
Institución:Universidad Nacional de Ingeniería
Repositorio:UNI-Tesis
Lenguaje:español
OAI Identifier:oai:cybertesis.uni.edu.pe:20.500.14076/4933
Enlace del recurso:http://hdl.handle.net/20.500.14076/4933
Nivel de acceso:acceso abierto
Materia:Pobreza monetaria
Análisis estadísticos
id UUNI_1e3769370cf7d87442c1b85431bc2ef5
oai_identifier_str oai:cybertesis.uni.edu.pe:20.500.14076/4933
network_acronym_str UUNI
network_name_str UNI-Tesis
repository_id_str 1534
dc.title.es.fl_str_mv Determinación del mejor estimador de la pobreza monetaria entre cinco métodos de área pequeña (SAE) mediante experimentos de Montecarlo y remuestreo de Jackknife y Boostrap en el período 2012-2013
title Determinación del mejor estimador de la pobreza monetaria entre cinco métodos de área pequeña (SAE) mediante experimentos de Montecarlo y remuestreo de Jackknife y Boostrap en el período 2012-2013
spellingShingle Determinación del mejor estimador de la pobreza monetaria entre cinco métodos de área pequeña (SAE) mediante experimentos de Montecarlo y remuestreo de Jackknife y Boostrap en el período 2012-2013
Suárez Inocente, Michel Steve
Pobreza monetaria
Análisis estadísticos
title_short Determinación del mejor estimador de la pobreza monetaria entre cinco métodos de área pequeña (SAE) mediante experimentos de Montecarlo y remuestreo de Jackknife y Boostrap en el período 2012-2013
title_full Determinación del mejor estimador de la pobreza monetaria entre cinco métodos de área pequeña (SAE) mediante experimentos de Montecarlo y remuestreo de Jackknife y Boostrap en el período 2012-2013
title_fullStr Determinación del mejor estimador de la pobreza monetaria entre cinco métodos de área pequeña (SAE) mediante experimentos de Montecarlo y remuestreo de Jackknife y Boostrap en el período 2012-2013
title_full_unstemmed Determinación del mejor estimador de la pobreza monetaria entre cinco métodos de área pequeña (SAE) mediante experimentos de Montecarlo y remuestreo de Jackknife y Boostrap en el período 2012-2013
title_sort Determinación del mejor estimador de la pobreza monetaria entre cinco métodos de área pequeña (SAE) mediante experimentos de Montecarlo y remuestreo de Jackknife y Boostrap en el período 2012-2013
dc.creator.none.fl_str_mv Suárez Inocente, Michel Steve
author Suárez Inocente, Michel Steve
author_facet Suárez Inocente, Michel Steve
author_role author
dc.contributor.advisor.fl_str_mv Infante Rojas, Magen Danielle
dc.contributor.author.fl_str_mv Suárez Inocente, Michel Steve
dc.subject.es.fl_str_mv Pobreza monetaria
Análisis estadísticos
topic Pobreza monetaria
Análisis estadísticos
description El propósito de este trabajo es estimar y comparar la precisión del indicador de pobreza monetaria en base a 5 metodologías de áreas menores o también conocido como SAE (Small Area Estimation) en los 24 departamentos y en la Provincia Constitucional del Callao para el periodo de años 2012 y 2013, utilizando los datos de la Encuesta Nacional de Hogares 2012- 2013 (ENAHO 2012-2013) y del Empadronamiento Distrital de Población y Vivienda 2012-2013 (SISFOH 2012-2013), estos dos instrumentos se pueden descargar de la web del Instituto Nacional de Estadística e Informática (INEI) en el módulo de microdatos (INEI, Microdatos INEI). El indicador de pobreza monetaria se evaluó en base a 500 simulaciones de muestras tipo ENAHO 2012-2013 por experimentos de Montecarlo obtenidas a partir de la base censal SISFOH 2012-2013 y para las 5 metodologías SAE. Posteriormente se evaluaron los indicadores Sesgo Relativo y el Error Cuadrático Relativo para estimar la precisión relativa de las diferentes metodologías, los cuales permitieron conocer que la metodología SAE de Estimador Sintético posee mejores características de un estimador preciso. Además se presentó para la metodología SAE con mejor característica de precisión relativa 2 formas para calcular su coeficiente de variación mediante remuestreo, utilizando Jackknife y Bootstrap, posteriormente se le comparó con el método estándar y el resultado fue que el estimador sintético de variable edad-sexo es el que posee mejores características de un estimador preciso para la pobreza monetaria. Los métodos en cuestión permitieron calcular estimados de pobreza monetaria con mejores indicadores de precisión para los 24 departamentos y la Provincia Constitucional del Callao en el periodo de años 2012-2013. Palabras claves: pobreza monetaria, precisión, sesgo, varianza, simulación, Montecarlo, sae, áreas menores, remuestreo
publishDate 2016
dc.date.accessioned.none.fl_str_mv 2017-09-21T01:38:26Z
dc.date.available.none.fl_str_mv 2017-09-21T01:38:26Z
dc.date.issued.fl_str_mv 2016
dc.type.es.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.14076/4933
url http://hdl.handle.net/20.500.14076/4933
dc.language.iso.es.fl_str_mv spa
language spa
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es.fl_str_mv application/pdf
dc.publisher.es.fl_str_mv Universidad Nacional de Ingeniería
dc.source.es.fl_str_mv Universidad Nacional de Ingeniería
Repositorio Institucional - UNI
dc.source.none.fl_str_mv reponame:UNI-Tesis
instname:Universidad Nacional de Ingeniería
instacron:UNI
instname_str Universidad Nacional de Ingeniería
instacron_str UNI
institution UNI
reponame_str UNI-Tesis
collection UNI-Tesis
bitstream.url.fl_str_mv http://cybertesis.uni.edu.pe/bitstream/20.500.14076/4933/3/suarez_im.pdf.txt
http://cybertesis.uni.edu.pe/bitstream/20.500.14076/4933/2/license.txt
http://cybertesis.uni.edu.pe/bitstream/20.500.14076/4933/1/suarez_im.pdf
bitstream.checksum.fl_str_mv 6027acc1f67696e18518b86ca113521b
8a4605be74aa9ea9d79846c1fba20a33
8283f0daeb543ea9b41a706bfafed3c4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - UNI
repository.mail.fl_str_mv repositorio@uni.edu.pe
_version_ 1840085484342083584
spelling Infante Rojas, Magen DanielleSuárez Inocente, Michel SteveSuárez Inocente, Michel Steve2017-09-21T01:38:26Z2017-09-21T01:38:26Z2016http://hdl.handle.net/20.500.14076/4933El propósito de este trabajo es estimar y comparar la precisión del indicador de pobreza monetaria en base a 5 metodologías de áreas menores o también conocido como SAE (Small Area Estimation) en los 24 departamentos y en la Provincia Constitucional del Callao para el periodo de años 2012 y 2013, utilizando los datos de la Encuesta Nacional de Hogares 2012- 2013 (ENAHO 2012-2013) y del Empadronamiento Distrital de Población y Vivienda 2012-2013 (SISFOH 2012-2013), estos dos instrumentos se pueden descargar de la web del Instituto Nacional de Estadística e Informática (INEI) en el módulo de microdatos (INEI, Microdatos INEI). El indicador de pobreza monetaria se evaluó en base a 500 simulaciones de muestras tipo ENAHO 2012-2013 por experimentos de Montecarlo obtenidas a partir de la base censal SISFOH 2012-2013 y para las 5 metodologías SAE. Posteriormente se evaluaron los indicadores Sesgo Relativo y el Error Cuadrático Relativo para estimar la precisión relativa de las diferentes metodologías, los cuales permitieron conocer que la metodología SAE de Estimador Sintético posee mejores características de un estimador preciso. Además se presentó para la metodología SAE con mejor característica de precisión relativa 2 formas para calcular su coeficiente de variación mediante remuestreo, utilizando Jackknife y Bootstrap, posteriormente se le comparó con el método estándar y el resultado fue que el estimador sintético de variable edad-sexo es el que posee mejores características de un estimador preciso para la pobreza monetaria. Los métodos en cuestión permitieron calcular estimados de pobreza monetaria con mejores indicadores de precisión para los 24 departamentos y la Provincia Constitucional del Callao en el periodo de años 2012-2013. Palabras claves: pobreza monetaria, precisión, sesgo, varianza, simulación, Montecarlo, sae, áreas menores, remuestreoSubmitted by Quispe Rabanal Flavio (flaviofime@hotmail.com) on 2017-09-21T01:38:26Z No. of bitstreams: 1 suarez_im.pdf: 2787835 bytes, checksum: 8283f0daeb543ea9b41a706bfafed3c4 (MD5)Made available in DSpace on 2017-09-21T01:38:26Z (GMT). No. of bitstreams: 1 suarez_im.pdf: 2787835 bytes, checksum: 8283f0daeb543ea9b41a706bfafed3c4 (MD5) Previous issue date: 2016Tesisapplication/pdfspaUniversidad Nacional de Ingenieríainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Universidad Nacional de IngenieríaRepositorio Institucional - UNIreponame:UNI-Tesisinstname:Universidad Nacional de Ingenieríainstacron:UNIPobreza monetariaAnálisis estadísticosDeterminación del mejor estimador de la pobreza monetaria entre cinco métodos de área pequeña (SAE) mediante experimentos de Montecarlo y remuestreo de Jackknife y Boostrap en el período 2012-2013info:eu-repo/semantics/bachelorThesisSUNEDUIngeniero EstadísticoUniversidad Nacional de Ingeniería. Facultad de Ingeniería Económica, Estadística y Ciencias SocialesTítulo ProfesionalIngeniería EstadísticaIngenieríaTEXTsuarez_im.pdf.txtsuarez_im.pdf.txtExtracted texttext/plain153203http://cybertesis.uni.edu.pe/bitstream/20.500.14076/4933/3/suarez_im.pdf.txt6027acc1f67696e18518b86ca113521bMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://cybertesis.uni.edu.pe/bitstream/20.500.14076/4933/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALsuarez_im.pdfsuarez_im.pdfapplication/pdf2787835http://cybertesis.uni.edu.pe/bitstream/20.500.14076/4933/1/suarez_im.pdf8283f0daeb543ea9b41a706bfafed3c4MD5120.500.14076/4933oai:cybertesis.uni.edu.pe:20.500.14076/49332021-01-27 14:45:56.238Repositorio Institucional - UNIrepositorio@uni.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.90587
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).