Predictive Control of the mineral particle size with kernel-reduced volterra models in a balls mill grinding circuit
Descripción del Articulo
We report the results of the application of the Model-based Predictive Control (MPC) algorithm for a 3×3 MIMO balls mill grinding system by using computational simulation and Monte Carlo data generation. For this purpose, the system has been identified through a reduced scheme of Volterra formalism...
Autor: | |
---|---|
Formato: | objeto de conferencia |
Fecha de Publicación: | 2015 |
Institución: | Universidad de Ciencias y Humanidades |
Repositorio: | UCH-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.uch.edu.pe:uch/376 |
Enlace del recurso: | http://repositorio.uch.edu.pe/handle/uch/376 http://dx.doi.org/10.1109/ISIE.2015.7281453 https://ieeexplore.ieee.org/document/7281453 |
Nivel de acceso: | acceso embargado |
Materia: | Algorithms Grinding (machining) Industrial electronics Model predictive control Monte Carlo methods Particle size Predictive control systems Computational simulation Mill-grinding Mineral particles Model based predictive control Monte Carlo data Output variables Predictive control Ball mills Volterra model |
id |
UUCH_83c24ee5eff0b061684f28e474a47125 |
---|---|
oai_identifier_str |
oai:repositorio.uch.edu.pe:uch/376 |
network_acronym_str |
UUCH |
network_name_str |
UCH-Institucional |
repository_id_str |
4783 |
spelling |
Nieto Chaupis, Huber3 June 2015 through 5 June 20152019-08-26T02:27:19Z2019-08-26T02:27:19Z2015-06Nieto Chaupis, H. (Junio, 2015). Predictive Control of the mineral particle size with kernel-reduced Volterra models in a balls mill grinding circuit. En 24th International Symposium on Industrial Electronics (ISIE), Brazil.http://repositorio.uch.edu.pe/handle/uch/376http://dx.doi.org/10.1109/ISIE.2015.7281453https://ieeexplore.ieee.org/document/728145310.1109/ISIE.2015.7281453IEEE International Symposium on Industrial Electronics, ISIE2-s2.0-84947230914We report the results of the application of the Model-based Predictive Control (MPC) algorithm for a 3×3 MIMO balls mill grinding system by using computational simulation and Monte Carlo data generation. For this purpose, the system has been identified through a reduced scheme of Volterra formalism by which the proposed methodology has required to employ up to 20 parameters. Subsequently, the model enters in a framework of MPC which targets to control the particle size, one of the most important output variables in this study. According to the simulation results the system identification error is of order of 3%, whereas the MPC scheme applied to control a desired set-point namely 75 %-200mesh is accompanied by a deviation of ±5%. Since the balls mill grinding circuit is a nonlinear system, it is expected that the system might collapse as consequence of the accumulated circulant load. The simulations have predicted that the MPC algorithm running with a Volterra-based model might surpass situations of stops and alarms system, even in those cases where the system is attacked by unexpected disturbs and random events.Submitted by sistemas uch (sistemas@uch.edu.pe) on 2019-08-26T02:27:19Z No. of bitstreams: 1 REPOSITORIO.pdf: 29656 bytes, checksum: 04319d67592b306412ce804f495f0004 (MD5)Made available in DSpace on 2019-08-26T02:27:19Z (GMT). No. of bitstreams: 1 REPOSITORIO.pdf: 29656 bytes, checksum: 04319d67592b306412ce804f495f0004 (MD5) Previous issue date: 2015-06Federal University of Mato Grosso do Sul (UFMS);Federal University of Rio de Janeiro (UFRJ);State University of Rio de Janeiro (UERJ);The Institute of Electrical and Electronics Engineers Industrial Electronics Society (IEEE IES)engInstitute of Electrical and Electronics Engineers Inc.info:eu-repo/semantics/articleIEEE International Symposium on Industrial Electronicsinfo:eu-repo/semantics/embargoedAccessRepositorio Institucional - UCHUniversidad de Ciencias y Humanidadesreponame:UCH-Institucionalinstname:Universidad de Ciencias y Humanidadesinstacron:UCHAlgorithmsGrinding (machining)Industrial electronicsModel predictive controlMonte Carlo methodsParticle sizePredictive control systemsComputational simulationMill-grindingMineral particlesModel based predictive controlMonte Carlo dataOutput variablesPredictive controlBall millsVolterra modelPredictive Control of the mineral particle size with kernel-reduced volterra models in a balls mill grinding circuitinfo:eu-repo/semantics/conferenceObjectuch/376oai:repositorio.uch.edu.pe:uch/3762019-12-20 18:34:00.823Repositorio UCHuch.dspace@gmail.com |
dc.title.en_PE.fl_str_mv |
Predictive Control of the mineral particle size with kernel-reduced volterra models in a balls mill grinding circuit |
title |
Predictive Control of the mineral particle size with kernel-reduced volterra models in a balls mill grinding circuit |
spellingShingle |
Predictive Control of the mineral particle size with kernel-reduced volterra models in a balls mill grinding circuit Nieto Chaupis, Huber Algorithms Grinding (machining) Industrial electronics Model predictive control Monte Carlo methods Particle size Predictive control systems Computational simulation Mill-grinding Mineral particles Model based predictive control Monte Carlo data Output variables Predictive control Ball mills Volterra model |
title_short |
Predictive Control of the mineral particle size with kernel-reduced volterra models in a balls mill grinding circuit |
title_full |
Predictive Control of the mineral particle size with kernel-reduced volterra models in a balls mill grinding circuit |
title_fullStr |
Predictive Control of the mineral particle size with kernel-reduced volterra models in a balls mill grinding circuit |
title_full_unstemmed |
Predictive Control of the mineral particle size with kernel-reduced volterra models in a balls mill grinding circuit |
title_sort |
Predictive Control of the mineral particle size with kernel-reduced volterra models in a balls mill grinding circuit |
author |
Nieto Chaupis, Huber |
author_facet |
Nieto Chaupis, Huber |
author_role |
author |
dc.contributor.author.fl_str_mv |
Nieto Chaupis, Huber |
dc.subject.en.fl_str_mv |
Algorithms Grinding (machining) Industrial electronics Model predictive control Monte Carlo methods Particle size Predictive control systems Computational simulation Mill-grinding Mineral particles Model based predictive control Monte Carlo data Output variables Predictive control Ball mills |
topic |
Algorithms Grinding (machining) Industrial electronics Model predictive control Monte Carlo methods Particle size Predictive control systems Computational simulation Mill-grinding Mineral particles Model based predictive control Monte Carlo data Output variables Predictive control Ball mills Volterra model |
dc.subject.en_.fl_str_mv |
Volterra model |
description |
We report the results of the application of the Model-based Predictive Control (MPC) algorithm for a 3×3 MIMO balls mill grinding system by using computational simulation and Monte Carlo data generation. For this purpose, the system has been identified through a reduced scheme of Volterra formalism by which the proposed methodology has required to employ up to 20 parameters. Subsequently, the model enters in a framework of MPC which targets to control the particle size, one of the most important output variables in this study. According to the simulation results the system identification error is of order of 3%, whereas the MPC scheme applied to control a desired set-point namely 75 %-200mesh is accompanied by a deviation of ±5%. Since the balls mill grinding circuit is a nonlinear system, it is expected that the system might collapse as consequence of the accumulated circulant load. The simulations have predicted that the MPC algorithm running with a Volterra-based model might surpass situations of stops and alarms system, even in those cases where the system is attacked by unexpected disturbs and random events. |
publishDate |
2015 |
dc.date.accessioned.none.fl_str_mv |
2019-08-26T02:27:19Z |
dc.date.available.none.fl_str_mv |
2019-08-26T02:27:19Z |
dc.date.issued.fl_str_mv |
2015-06 |
dc.type.en_PE.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
dc.identifier.citation.en_PE.fl_str_mv |
Nieto Chaupis, H. (Junio, 2015). Predictive Control of the mineral particle size with kernel-reduced Volterra models in a balls mill grinding circuit. En 24th International Symposium on Industrial Electronics (ISIE), Brazil. |
dc.identifier.uri.none.fl_str_mv |
http://repositorio.uch.edu.pe/handle/uch/376 http://dx.doi.org/10.1109/ISIE.2015.7281453 https://ieeexplore.ieee.org/document/7281453 |
dc.identifier.doi.en_PE.fl_str_mv |
10.1109/ISIE.2015.7281453 |
dc.identifier.journal.en_PE.fl_str_mv |
IEEE International Symposium on Industrial Electronics, ISIE |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-84947230914 |
identifier_str_mv |
Nieto Chaupis, H. (Junio, 2015). Predictive Control of the mineral particle size with kernel-reduced Volterra models in a balls mill grinding circuit. En 24th International Symposium on Industrial Electronics (ISIE), Brazil. 10.1109/ISIE.2015.7281453 IEEE International Symposium on Industrial Electronics, ISIE 2-s2.0-84947230914 |
url |
http://repositorio.uch.edu.pe/handle/uch/376 http://dx.doi.org/10.1109/ISIE.2015.7281453 https://ieeexplore.ieee.org/document/7281453 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.en_PE.fl_str_mv |
info:eu-repo/semantics/article |
dc.relation.ispartof.none.fl_str_mv |
IEEE International Symposium on Industrial Electronics |
dc.rights.en_PE.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.coverage.temporal.none.fl_str_mv |
3 June 2015 through 5 June 2015 |
dc.publisher.en_PE.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.source.en_PE.fl_str_mv |
Repositorio Institucional - UCH Universidad de Ciencias y Humanidades |
dc.source.none.fl_str_mv |
reponame:UCH-Institucional instname:Universidad de Ciencias y Humanidades instacron:UCH |
instname_str |
Universidad de Ciencias y Humanidades |
instacron_str |
UCH |
institution |
UCH |
reponame_str |
UCH-Institucional |
collection |
UCH-Institucional |
repository.name.fl_str_mv |
Repositorio UCH |
repository.mail.fl_str_mv |
uch.dspace@gmail.com |
_version_ |
1835549007404859392 |
score |
13.919782 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).