Predictive Control of the mineral particle size with kernel-reduced volterra models in a balls mill grinding circuit

Descripción del Articulo

We report the results of the application of the Model-based Predictive Control (MPC) algorithm for a 3×3 MIMO balls mill grinding system by using computational simulation and Monte Carlo data generation. For this purpose, the system has been identified through a reduced scheme of Volterra formalism...

Descripción completa

Detalles Bibliográficos
Autor: Nieto Chaupis, Huber
Formato: objeto de conferencia
Fecha de Publicación:2015
Institución:Universidad de Ciencias y Humanidades
Repositorio:UCH-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.uch.edu.pe:uch/376
Enlace del recurso:http://repositorio.uch.edu.pe/handle/uch/376
http://dx.doi.org/10.1109/ISIE.2015.7281453
https://ieeexplore.ieee.org/document/7281453
Nivel de acceso:acceso embargado
Materia:Algorithms
Grinding (machining)
Industrial electronics
Model predictive control
Monte Carlo methods
Particle size
Predictive control systems
Computational simulation
Mill-grinding
Mineral particles
Model based predictive control
Monte Carlo data
Output variables
Predictive control
Ball mills
Volterra model
id UUCH_83c24ee5eff0b061684f28e474a47125
oai_identifier_str oai:repositorio.uch.edu.pe:uch/376
network_acronym_str UUCH
network_name_str UCH-Institucional
repository_id_str 4783
spelling Nieto Chaupis, Huber3 June 2015 through 5 June 20152019-08-26T02:27:19Z2019-08-26T02:27:19Z2015-06Nieto Chaupis, H. (Junio, 2015). Predictive Control of the mineral particle size with kernel-reduced Volterra models in a balls mill grinding circuit. En 24th International Symposium on Industrial Electronics (ISIE), Brazil.http://repositorio.uch.edu.pe/handle/uch/376http://dx.doi.org/10.1109/ISIE.2015.7281453https://ieeexplore.ieee.org/document/728145310.1109/ISIE.2015.7281453IEEE International Symposium on Industrial Electronics, ISIE2-s2.0-84947230914We report the results of the application of the Model-based Predictive Control (MPC) algorithm for a 3×3 MIMO balls mill grinding system by using computational simulation and Monte Carlo data generation. For this purpose, the system has been identified through a reduced scheme of Volterra formalism by which the proposed methodology has required to employ up to 20 parameters. Subsequently, the model enters in a framework of MPC which targets to control the particle size, one of the most important output variables in this study. According to the simulation results the system identification error is of order of 3%, whereas the MPC scheme applied to control a desired set-point namely 75 %-200mesh is accompanied by a deviation of ±5%. Since the balls mill grinding circuit is a nonlinear system, it is expected that the system might collapse as consequence of the accumulated circulant load. The simulations have predicted that the MPC algorithm running with a Volterra-based model might surpass situations of stops and alarms system, even in those cases where the system is attacked by unexpected disturbs and random events.Submitted by sistemas uch (sistemas@uch.edu.pe) on 2019-08-26T02:27:19Z No. of bitstreams: 1 REPOSITORIO.pdf: 29656 bytes, checksum: 04319d67592b306412ce804f495f0004 (MD5)Made available in DSpace on 2019-08-26T02:27:19Z (GMT). No. of bitstreams: 1 REPOSITORIO.pdf: 29656 bytes, checksum: 04319d67592b306412ce804f495f0004 (MD5) Previous issue date: 2015-06Federal University of Mato Grosso do Sul (UFMS);Federal University of Rio de Janeiro (UFRJ);State University of Rio de Janeiro (UERJ);The Institute of Electrical and Electronics Engineers Industrial Electronics Society (IEEE IES)engInstitute of Electrical and Electronics Engineers Inc.info:eu-repo/semantics/articleIEEE International Symposium on Industrial Electronicsinfo:eu-repo/semantics/embargoedAccessRepositorio Institucional - UCHUniversidad de Ciencias y Humanidadesreponame:UCH-Institucionalinstname:Universidad de Ciencias y Humanidadesinstacron:UCHAlgorithmsGrinding (machining)Industrial electronicsModel predictive controlMonte Carlo methodsParticle sizePredictive control systemsComputational simulationMill-grindingMineral particlesModel based predictive controlMonte Carlo dataOutput variablesPredictive controlBall millsVolterra modelPredictive Control of the mineral particle size with kernel-reduced volterra models in a balls mill grinding circuitinfo:eu-repo/semantics/conferenceObjectuch/376oai:repositorio.uch.edu.pe:uch/3762019-12-20 18:34:00.823Repositorio UCHuch.dspace@gmail.com
dc.title.en_PE.fl_str_mv Predictive Control of the mineral particle size with kernel-reduced volterra models in a balls mill grinding circuit
title Predictive Control of the mineral particle size with kernel-reduced volterra models in a balls mill grinding circuit
spellingShingle Predictive Control of the mineral particle size with kernel-reduced volterra models in a balls mill grinding circuit
Nieto Chaupis, Huber
Algorithms
Grinding (machining)
Industrial electronics
Model predictive control
Monte Carlo methods
Particle size
Predictive control systems
Computational simulation
Mill-grinding
Mineral particles
Model based predictive control
Monte Carlo data
Output variables
Predictive control
Ball mills
Volterra model
title_short Predictive Control of the mineral particle size with kernel-reduced volterra models in a balls mill grinding circuit
title_full Predictive Control of the mineral particle size with kernel-reduced volterra models in a balls mill grinding circuit
title_fullStr Predictive Control of the mineral particle size with kernel-reduced volterra models in a balls mill grinding circuit
title_full_unstemmed Predictive Control of the mineral particle size with kernel-reduced volterra models in a balls mill grinding circuit
title_sort Predictive Control of the mineral particle size with kernel-reduced volterra models in a balls mill grinding circuit
author Nieto Chaupis, Huber
author_facet Nieto Chaupis, Huber
author_role author
dc.contributor.author.fl_str_mv Nieto Chaupis, Huber
dc.subject.en.fl_str_mv Algorithms
Grinding (machining)
Industrial electronics
Model predictive control
Monte Carlo methods
Particle size
Predictive control systems
Computational simulation
Mill-grinding
Mineral particles
Model based predictive control
Monte Carlo data
Output variables
Predictive control
Ball mills
topic Algorithms
Grinding (machining)
Industrial electronics
Model predictive control
Monte Carlo methods
Particle size
Predictive control systems
Computational simulation
Mill-grinding
Mineral particles
Model based predictive control
Monte Carlo data
Output variables
Predictive control
Ball mills
Volterra model
dc.subject.en_.fl_str_mv Volterra model
description We report the results of the application of the Model-based Predictive Control (MPC) algorithm for a 3×3 MIMO balls mill grinding system by using computational simulation and Monte Carlo data generation. For this purpose, the system has been identified through a reduced scheme of Volterra formalism by which the proposed methodology has required to employ up to 20 parameters. Subsequently, the model enters in a framework of MPC which targets to control the particle size, one of the most important output variables in this study. According to the simulation results the system identification error is of order of 3%, whereas the MPC scheme applied to control a desired set-point namely 75 %-200mesh is accompanied by a deviation of ±5%. Since the balls mill grinding circuit is a nonlinear system, it is expected that the system might collapse as consequence of the accumulated circulant load. The simulations have predicted that the MPC algorithm running with a Volterra-based model might surpass situations of stops and alarms system, even in those cases where the system is attacked by unexpected disturbs and random events.
publishDate 2015
dc.date.accessioned.none.fl_str_mv 2019-08-26T02:27:19Z
dc.date.available.none.fl_str_mv 2019-08-26T02:27:19Z
dc.date.issued.fl_str_mv 2015-06
dc.type.en_PE.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
dc.identifier.citation.en_PE.fl_str_mv Nieto Chaupis, H. (Junio, 2015). Predictive Control of the mineral particle size with kernel-reduced Volterra models in a balls mill grinding circuit. En 24th International Symposium on Industrial Electronics (ISIE), Brazil.
dc.identifier.uri.none.fl_str_mv http://repositorio.uch.edu.pe/handle/uch/376
http://dx.doi.org/10.1109/ISIE.2015.7281453
https://ieeexplore.ieee.org/document/7281453
dc.identifier.doi.en_PE.fl_str_mv 10.1109/ISIE.2015.7281453
dc.identifier.journal.en_PE.fl_str_mv IEEE International Symposium on Industrial Electronics, ISIE
dc.identifier.scopus.none.fl_str_mv 2-s2.0-84947230914
identifier_str_mv Nieto Chaupis, H. (Junio, 2015). Predictive Control of the mineral particle size with kernel-reduced Volterra models in a balls mill grinding circuit. En 24th International Symposium on Industrial Electronics (ISIE), Brazil.
10.1109/ISIE.2015.7281453
IEEE International Symposium on Industrial Electronics, ISIE
2-s2.0-84947230914
url http://repositorio.uch.edu.pe/handle/uch/376
http://dx.doi.org/10.1109/ISIE.2015.7281453
https://ieeexplore.ieee.org/document/7281453
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.en_PE.fl_str_mv info:eu-repo/semantics/article
dc.relation.ispartof.none.fl_str_mv IEEE International Symposium on Industrial Electronics
dc.rights.en_PE.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.coverage.temporal.none.fl_str_mv 3 June 2015 through 5 June 2015
dc.publisher.en_PE.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.en_PE.fl_str_mv Repositorio Institucional - UCH
Universidad de Ciencias y Humanidades
dc.source.none.fl_str_mv reponame:UCH-Institucional
instname:Universidad de Ciencias y Humanidades
instacron:UCH
instname_str Universidad de Ciencias y Humanidades
instacron_str UCH
institution UCH
reponame_str UCH-Institucional
collection UCH-Institucional
repository.name.fl_str_mv Repositorio UCH
repository.mail.fl_str_mv uch.dspace@gmail.com
_version_ 1835549007404859392
score 13.919782
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).