Predictive Control of the mineral particle size with kernel-reduced volterra models in a balls mill grinding circuit

Descripción del Articulo

We report the results of the application of the Model-based Predictive Control (MPC) algorithm for a 3×3 MIMO balls mill grinding system by using computational simulation and Monte Carlo data generation. For this purpose, the system has been identified through a reduced scheme of Volterra formalism...

Descripción completa

Detalles Bibliográficos
Autor: Nieto Chaupis, Huber
Formato: objeto de conferencia
Fecha de Publicación:2015
Institución:Universidad de Ciencias y Humanidades
Repositorio:UCH-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.uch.edu.pe:uch/376
Enlace del recurso:http://repositorio.uch.edu.pe/handle/uch/376
http://dx.doi.org/10.1109/ISIE.2015.7281453
https://ieeexplore.ieee.org/document/7281453
Nivel de acceso:acceso embargado
Materia:Algorithms
Grinding (machining)
Industrial electronics
Model predictive control
Monte Carlo methods
Particle size
Predictive control systems
Computational simulation
Mill-grinding
Mineral particles
Model based predictive control
Monte Carlo data
Output variables
Predictive control
Ball mills
Volterra model
Descripción
Sumario:We report the results of the application of the Model-based Predictive Control (MPC) algorithm for a 3×3 MIMO balls mill grinding system by using computational simulation and Monte Carlo data generation. For this purpose, the system has been identified through a reduced scheme of Volterra formalism by which the proposed methodology has required to employ up to 20 parameters. Subsequently, the model enters in a framework of MPC which targets to control the particle size, one of the most important output variables in this study. According to the simulation results the system identification error is of order of 3%, whereas the MPC scheme applied to control a desired set-point namely 75 %-200mesh is accompanied by a deviation of ±5%. Since the balls mill grinding circuit is a nonlinear system, it is expected that the system might collapse as consequence of the accumulated circulant load. The simulations have predicted that the MPC algorithm running with a Volterra-based model might surpass situations of stops and alarms system, even in those cases where the system is attacked by unexpected disturbs and random events.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).