Exportación Completada — 

Edge device for movement pattern classification using neural network algorithms

Descripción del Articulo

Portable electronic systems allow the analysis and monitoring of continuous time signals, such as human activity, integrating deep learning techniques with cloud computing, causing network traffic and high energy consumption. In addition, the use of algorithms based on neural networks are a very wid...

Descripción completa

Detalles Bibliográficos
Autores: Espino Campos, Rafael, Yauri, Rafael
Formato: preprint
Fecha de Publicación:2023
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/6539
Enlace del recurso:https://hdl.handle.net/20.500.12867/6539
https://doi.org/10.11591/ijeecs.v30.i1
Nivel de acceso:acceso abierto
Materia:Internet of things
Embedded intelligence
Machine learning
Edge computing
Artificial neural networks
https://purl.org/pe-repo/ocde/ford#1.02.01
Descripción
Sumario:Portable electronic systems allow the analysis and monitoring of continuous time signals, such as human activity, integrating deep learning techniques with cloud computing, causing network traffic and high energy consumption. In addition, the use of algorithms based on neural networks are a very widespread solution in these applications, but they have a high computational cost, not suitable for edge devices. In this context, solutions are created that bring data analysis closer to the edge of the network, so in this paper models adapted to an edge device for the recognition of human activity are evaluated, considering characteristics such as inference time, memory, and precision. Two categories of models based on deep and convolutional neural networks are developed by implementing them in C language and comparing with the TensorFlow Lite platform. The results show that the implementations with libraries have a better accuracy result of 76% using principal component analysis inputs, obtaining an execution time of 9ms. Therefore, when evaluating the models, we must not only consider their accuracy but also the execution time and memory on the device.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).