Edge device for movement pattern classification using neural network algorithms

Descripción del Articulo

Portable electronic systems allow the analysis and monitoring of continuous time signals, such as human activity, integrating deep learning techniques with cloud computing, causing network traffic and high energy consumption. In addition, the use of algorithms based on neural networks are a very wid...

Descripción completa

Detalles Bibliográficos
Autores: Espino Campos, Rafael, Yauri, Rafael
Formato: preprint
Fecha de Publicación:2023
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/6539
Enlace del recurso:https://hdl.handle.net/20.500.12867/6539
https://doi.org/10.11591/ijeecs.v30.i1
Nivel de acceso:acceso abierto
Materia:Internet of things
Embedded intelligence
Machine learning
Edge computing
Artificial neural networks
https://purl.org/pe-repo/ocde/ford#1.02.01
id UTPD_f7963082cde9891b4910bbeb63c4350f
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/6539
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Edge device for movement pattern classification using neural network algorithms
title Edge device for movement pattern classification using neural network algorithms
spellingShingle Edge device for movement pattern classification using neural network algorithms
Espino Campos, Rafael
Internet of things
Embedded intelligence
Machine learning
Edge computing
Artificial neural networks
https://purl.org/pe-repo/ocde/ford#1.02.01
title_short Edge device for movement pattern classification using neural network algorithms
title_full Edge device for movement pattern classification using neural network algorithms
title_fullStr Edge device for movement pattern classification using neural network algorithms
title_full_unstemmed Edge device for movement pattern classification using neural network algorithms
title_sort Edge device for movement pattern classification using neural network algorithms
author Espino Campos, Rafael
author_facet Espino Campos, Rafael
Yauri, Rafael
author_role author
author2 Yauri, Rafael
author2_role author
dc.contributor.author.fl_str_mv Espino Campos, Rafael
Yauri, Rafael
dc.subject.es_PE.fl_str_mv Internet of things
Embedded intelligence
Machine learning
Edge computing
Artificial neural networks
topic Internet of things
Embedded intelligence
Machine learning
Edge computing
Artificial neural networks
https://purl.org/pe-repo/ocde/ford#1.02.01
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.02.01
description Portable electronic systems allow the analysis and monitoring of continuous time signals, such as human activity, integrating deep learning techniques with cloud computing, causing network traffic and high energy consumption. In addition, the use of algorithms based on neural networks are a very widespread solution in these applications, but they have a high computational cost, not suitable for edge devices. In this context, solutions are created that bring data analysis closer to the edge of the network, so in this paper models adapted to an edge device for the recognition of human activity are evaluated, considering characteristics such as inference time, memory, and precision. Two categories of models based on deep and convolutional neural networks are developed by implementing them in C language and comparing with the TensorFlow Lite platform. The results show that the implementations with libraries have a better accuracy result of 76% using principal component analysis inputs, obtaining an execution time of 9ms. Therefore, when evaluating the models, we must not only consider their accuracy but also the execution time and memory on the device.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-01-27T01:15:46Z
dc.date.available.none.fl_str_mv 2023-01-27T01:15:46Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/preprint
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/acceptedVersion
format preprint
status_str acceptedVersion
dc.identifier.issn.none.fl_str_mv 2502-4760
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/6539
dc.identifier.journal.es_PE.fl_str_mv Indonesian Journal of Electrical Engineering and Computer Science
dc.identifier.doi.none.fl_str_mv https://doi.org/10.11591/ijeecs.v30.i1
identifier_str_mv 2502-4760
Indonesian Journal of Electrical Engineering and Computer Science
url https://hdl.handle.net/20.500.12867/6539
https://doi.org/10.11591/ijeecs.v30.i1
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.relation.ispartofseries.none.fl_str_mv Indonesian Journal of Electrical Engineering and Computer Science;vol. 30, n° 1, pp. 229-236
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-sa/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Institute of Advanced Engineering and Science
dc.publisher.country.es_PE.fl_str_mv ID
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv http://repositorio.utp.edu.pe/bitstream/20.500.12867/6539/3/R.Espino_Articulo_2023.pdf.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6539/4/R.Espino_Articulo_2023.pdf.jpg
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6539/2/license.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6539/1/R.Espino_Articulo_2023.pdf
bitstream.checksum.fl_str_mv 3d272469f59a43dfbc8fafe7f759de35
36902ba7e2c567c97d2b12ea27b80642
8a4605be74aa9ea9d79846c1fba20a33
66d196256b3e4645c8faaebb31f8d8e1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1817984919452778496
spelling Espino Campos, RafaelYauri, Rafael2023-01-27T01:15:46Z2023-01-27T01:15:46Z20232502-4760https://hdl.handle.net/20.500.12867/6539Indonesian Journal of Electrical Engineering and Computer Sciencehttps://doi.org/10.11591/ijeecs.v30.i1Portable electronic systems allow the analysis and monitoring of continuous time signals, such as human activity, integrating deep learning techniques with cloud computing, causing network traffic and high energy consumption. In addition, the use of algorithms based on neural networks are a very widespread solution in these applications, but they have a high computational cost, not suitable for edge devices. In this context, solutions are created that bring data analysis closer to the edge of the network, so in this paper models adapted to an edge device for the recognition of human activity are evaluated, considering characteristics such as inference time, memory, and precision. Two categories of models based on deep and convolutional neural networks are developed by implementing them in C language and comparing with the TensorFlow Lite platform. The results show that the implementations with libraries have a better accuracy result of 76% using principal component analysis inputs, obtaining an execution time of 9ms. Therefore, when evaluating the models, we must not only consider their accuracy but also the execution time and memory on the device.Campus Lima Centroapplication/pdfspaInstitute of Advanced Engineering and ScienceIDIndonesian Journal of Electrical Engineering and Computer Science;vol. 30, n° 1, pp. 229-236info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPInternet of thingsEmbedded intelligenceMachine learningEdge computingArtificial neural networkshttps://purl.org/pe-repo/ocde/ford#1.02.01Edge device for movement pattern classification using neural network algorithmsinfo:eu-repo/semantics/preprintinfo:eu-repo/semantics/acceptedVersionTEXTR.Espino_Articulo_2023.pdf.txtR.Espino_Articulo_2023.pdf.txtExtracted texttext/plain28000http://repositorio.utp.edu.pe/bitstream/20.500.12867/6539/3/R.Espino_Articulo_2023.pdf.txt3d272469f59a43dfbc8fafe7f759de35MD53THUMBNAILR.Espino_Articulo_2023.pdf.jpgR.Espino_Articulo_2023.pdf.jpgGenerated Thumbnailimage/jpeg21305http://repositorio.utp.edu.pe/bitstream/20.500.12867/6539/4/R.Espino_Articulo_2023.pdf.jpg36902ba7e2c567c97d2b12ea27b80642MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/6539/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALR.Espino_Articulo_2023.pdfR.Espino_Articulo_2023.pdfapplication/pdf730718http://repositorio.utp.edu.pe/bitstream/20.500.12867/6539/1/R.Espino_Articulo_2023.pdf66d196256b3e4645c8faaebb31f8d8e1MD5120.500.12867/6539oai:repositorio.utp.edu.pe:20.500.12867/65392023-01-27 11:03:40.993Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.958958
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).