Edge device for movement pattern classification using neural network algorithms
Descripción del Articulo
Portable electronic systems allow the analysis and monitoring of continuous time signals, such as human activity, integrating deep learning techniques with cloud computing, causing network traffic and high energy consumption. In addition, the use of algorithms based on neural networks are a very wid...
Autores: | , |
---|---|
Formato: | preprint |
Fecha de Publicación: | 2023 |
Institución: | Universidad Tecnológica del Perú |
Repositorio: | UTP-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/6539 |
Enlace del recurso: | https://hdl.handle.net/20.500.12867/6539 https://doi.org/10.11591/ijeecs.v30.i1 |
Nivel de acceso: | acceso abierto |
Materia: | Internet of things Embedded intelligence Machine learning Edge computing Artificial neural networks https://purl.org/pe-repo/ocde/ford#1.02.01 |
id |
UTPD_f7963082cde9891b4910bbeb63c4350f |
---|---|
oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/6539 |
network_acronym_str |
UTPD |
network_name_str |
UTP-Institucional |
repository_id_str |
4782 |
dc.title.es_PE.fl_str_mv |
Edge device for movement pattern classification using neural network algorithms |
title |
Edge device for movement pattern classification using neural network algorithms |
spellingShingle |
Edge device for movement pattern classification using neural network algorithms Espino Campos, Rafael Internet of things Embedded intelligence Machine learning Edge computing Artificial neural networks https://purl.org/pe-repo/ocde/ford#1.02.01 |
title_short |
Edge device for movement pattern classification using neural network algorithms |
title_full |
Edge device for movement pattern classification using neural network algorithms |
title_fullStr |
Edge device for movement pattern classification using neural network algorithms |
title_full_unstemmed |
Edge device for movement pattern classification using neural network algorithms |
title_sort |
Edge device for movement pattern classification using neural network algorithms |
author |
Espino Campos, Rafael |
author_facet |
Espino Campos, Rafael Yauri, Rafael |
author_role |
author |
author2 |
Yauri, Rafael |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Espino Campos, Rafael Yauri, Rafael |
dc.subject.es_PE.fl_str_mv |
Internet of things Embedded intelligence Machine learning Edge computing Artificial neural networks |
topic |
Internet of things Embedded intelligence Machine learning Edge computing Artificial neural networks https://purl.org/pe-repo/ocde/ford#1.02.01 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.02.01 |
description |
Portable electronic systems allow the analysis and monitoring of continuous time signals, such as human activity, integrating deep learning techniques with cloud computing, causing network traffic and high energy consumption. In addition, the use of algorithms based on neural networks are a very widespread solution in these applications, but they have a high computational cost, not suitable for edge devices. In this context, solutions are created that bring data analysis closer to the edge of the network, so in this paper models adapted to an edge device for the recognition of human activity are evaluated, considering characteristics such as inference time, memory, and precision. Two categories of models based on deep and convolutional neural networks are developed by implementing them in C language and comparing with the TensorFlow Lite platform. The results show that the implementations with libraries have a better accuracy result of 76% using principal component analysis inputs, obtaining an execution time of 9ms. Therefore, when evaluating the models, we must not only consider their accuracy but also the execution time and memory on the device. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-01-27T01:15:46Z |
dc.date.available.none.fl_str_mv |
2023-01-27T01:15:46Z |
dc.date.issued.fl_str_mv |
2023 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/preprint |
dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
preprint |
status_str |
acceptedVersion |
dc.identifier.issn.none.fl_str_mv |
2502-4760 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/6539 |
dc.identifier.journal.es_PE.fl_str_mv |
Indonesian Journal of Electrical Engineering and Computer Science |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.11591/ijeecs.v30.i1 |
identifier_str_mv |
2502-4760 Indonesian Journal of Electrical Engineering and Computer Science |
url |
https://hdl.handle.net/20.500.12867/6539 https://doi.org/10.11591/ijeecs.v30.i1 |
dc.language.iso.es_PE.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartofseries.none.fl_str_mv |
Indonesian Journal of Electrical Engineering and Computer Science;vol. 30, n° 1, pp. 229-236 |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
http://creativecommons.org/licenses/by-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-sa/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Institute of Advanced Engineering and Science |
dc.publisher.country.es_PE.fl_str_mv |
ID |
dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
instname_str |
Universidad Tecnológica del Perú |
instacron_str |
UTP |
institution |
UTP |
reponame_str |
UTP-Institucional |
collection |
UTP-Institucional |
bitstream.url.fl_str_mv |
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6539/3/R.Espino_Articulo_2023.pdf.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/6539/4/R.Espino_Articulo_2023.pdf.jpg http://repositorio.utp.edu.pe/bitstream/20.500.12867/6539/2/license.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/6539/1/R.Espino_Articulo_2023.pdf |
bitstream.checksum.fl_str_mv |
3d272469f59a43dfbc8fafe7f759de35 36902ba7e2c567c97d2b12ea27b80642 8a4605be74aa9ea9d79846c1fba20a33 66d196256b3e4645c8faaebb31f8d8e1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Tecnológica del Perú |
repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
_version_ |
1817984919452778496 |
spelling |
Espino Campos, RafaelYauri, Rafael2023-01-27T01:15:46Z2023-01-27T01:15:46Z20232502-4760https://hdl.handle.net/20.500.12867/6539Indonesian Journal of Electrical Engineering and Computer Sciencehttps://doi.org/10.11591/ijeecs.v30.i1Portable electronic systems allow the analysis and monitoring of continuous time signals, such as human activity, integrating deep learning techniques with cloud computing, causing network traffic and high energy consumption. In addition, the use of algorithms based on neural networks are a very widespread solution in these applications, but they have a high computational cost, not suitable for edge devices. In this context, solutions are created that bring data analysis closer to the edge of the network, so in this paper models adapted to an edge device for the recognition of human activity are evaluated, considering characteristics such as inference time, memory, and precision. Two categories of models based on deep and convolutional neural networks are developed by implementing them in C language and comparing with the TensorFlow Lite platform. The results show that the implementations with libraries have a better accuracy result of 76% using principal component analysis inputs, obtaining an execution time of 9ms. Therefore, when evaluating the models, we must not only consider their accuracy but also the execution time and memory on the device.Campus Lima Centroapplication/pdfspaInstitute of Advanced Engineering and ScienceIDIndonesian Journal of Electrical Engineering and Computer Science;vol. 30, n° 1, pp. 229-236info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPInternet of thingsEmbedded intelligenceMachine learningEdge computingArtificial neural networkshttps://purl.org/pe-repo/ocde/ford#1.02.01Edge device for movement pattern classification using neural network algorithmsinfo:eu-repo/semantics/preprintinfo:eu-repo/semantics/acceptedVersionTEXTR.Espino_Articulo_2023.pdf.txtR.Espino_Articulo_2023.pdf.txtExtracted texttext/plain28000http://repositorio.utp.edu.pe/bitstream/20.500.12867/6539/3/R.Espino_Articulo_2023.pdf.txt3d272469f59a43dfbc8fafe7f759de35MD53THUMBNAILR.Espino_Articulo_2023.pdf.jpgR.Espino_Articulo_2023.pdf.jpgGenerated Thumbnailimage/jpeg21305http://repositorio.utp.edu.pe/bitstream/20.500.12867/6539/4/R.Espino_Articulo_2023.pdf.jpg36902ba7e2c567c97d2b12ea27b80642MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/6539/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINALR.Espino_Articulo_2023.pdfR.Espino_Articulo_2023.pdfapplication/pdf730718http://repositorio.utp.edu.pe/bitstream/20.500.12867/6539/1/R.Espino_Articulo_2023.pdf66d196256b3e4645c8faaebb31f8d8e1MD5120.500.12867/6539oai:repositorio.utp.edu.pe:20.500.12867/65392023-01-27 11:03:40.993Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.958958 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).