Machine learning algorithms for high performance modelling in health monitoring system based on 5GNetworks

Descripción del Articulo

The development of Internet of Things (IoT) applications for creating behavioural and physiological monitoring methods, such as an IoT-based student healthcare monitoring system, has been accelerated by advances in sensor technology. Today, there are an increasing number of students living alone who...

Descripción completa

Detalles Bibliográficos
Autores: Collantes Inga, Zoila Mercedes, Meza Carhuancho, Juan Luis, Vertiz-Osores, Jacinto Joaquin, Cueva-Rios, Maria Alina, Fuster-Guillen, Doris, Ocaña-Fernández, Yolvi
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/6895
Enlace del recurso:https://hdl.handle.net/20.500.12867/6895
Nivel de acceso:acceso abierto
Materia:Internet of things
Machine learning
Health care
Artificial neural networks
https://purl.org/pe-repo/ocde/ford#1.02.00
id UTPD_f43cd8e596eb8a025e3ca94f64082625
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/6895
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Machine learning algorithms for high performance modelling in health monitoring system based on 5GNetworks
title Machine learning algorithms for high performance modelling in health monitoring system based on 5GNetworks
spellingShingle Machine learning algorithms for high performance modelling in health monitoring system based on 5GNetworks
Collantes Inga, Zoila Mercedes
Internet of things
Machine learning
Health care
Artificial neural networks
https://purl.org/pe-repo/ocde/ford#1.02.00
title_short Machine learning algorithms for high performance modelling in health monitoring system based on 5GNetworks
title_full Machine learning algorithms for high performance modelling in health monitoring system based on 5GNetworks
title_fullStr Machine learning algorithms for high performance modelling in health monitoring system based on 5GNetworks
title_full_unstemmed Machine learning algorithms for high performance modelling in health monitoring system based on 5GNetworks
title_sort Machine learning algorithms for high performance modelling in health monitoring system based on 5GNetworks
author Collantes Inga, Zoila Mercedes
author_facet Collantes Inga, Zoila Mercedes
Meza Carhuancho, Juan Luis
Vertiz-Osores, Jacinto Joaquin
Cueva-Rios, Maria Alina
Fuster-Guillen, Doris
Ocaña-Fernández, Yolvi
author_role author
author2 Meza Carhuancho, Juan Luis
Vertiz-Osores, Jacinto Joaquin
Cueva-Rios, Maria Alina
Fuster-Guillen, Doris
Ocaña-Fernández, Yolvi
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Collantes Inga, Zoila Mercedes
Meza Carhuancho, Juan Luis
Vertiz-Osores, Jacinto Joaquin
Cueva-Rios, Maria Alina
Fuster-Guillen, Doris
Ocaña-Fernández, Yolvi
dc.subject.es_PE.fl_str_mv Internet of things
Machine learning
Health care
Artificial neural networks
topic Internet of things
Machine learning
Health care
Artificial neural networks
https://purl.org/pe-repo/ocde/ford#1.02.00
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.02.00
description The development of Internet of Things (IoT) applications for creating behavioural and physiological monitoring methods, such as an IoT-based student healthcare monitoring system, has been accelerated by advances in sensor technology. Today, there are an increasing number of students living alone whoare dispersed across large geographic areas, therefore it is important to monitor their health and function. This research propose novel technique in high performance modelling for health monitoring system by 5G network based machine learning analysis. Here the input is collected as EEG brain waves which are monitored and collected through 5G networks. This input EEG waves has been processed and obtained as fragments and noise removal is carried out. The processed EEG wave fragments has been extracted using K-adaptive reinforcement learning. this extracted features has been classified using naïve bayes gradient feed forward neural network. The performance analysis shows comparative analysis between proposed and existing technique in terms of accuracy, precision, recall, F-1 score, RMSE and MAP. Proposed technique attained accuracy of 95%, precision of 85%, recall of 79%, F-1 measure of 68%, RMSE of 52% and MAP of 66%.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2023-04-28T17:04:08Z
dc.date.available.none.fl_str_mv 2023-04-28T17:04:08Z
dc.date.issued.fl_str_mv 2022
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2073-607X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/6895
dc.identifier.journal.es_PE.fl_str_mv International Journal of Communication Networks and Information Security
identifier_str_mv 2073-607X
International Journal of Communication Networks and Information Security
url https://hdl.handle.net/20.500.12867/6895
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.relation.ispartofseries.none.fl_str_mv International Journal of Communication Networks and Information Security;vol. 14, n° 3
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Auricle Global Society of Education and Research
dc.publisher.country.es_PE.fl_str_mv PK
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv http://repositorio.utp.edu.pe/bitstream/20.500.12867/6895/1/Z.Collantes_Articulo_2023.pdf
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6895/2/license.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6895/3/Z.Collantes_Articulo_2023.pdf.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/6895/4/Z.Collantes_Articulo_2023.pdf.jpg
bitstream.checksum.fl_str_mv 924541e1bb70b5670ded973d4d6a1aeb
8a4605be74aa9ea9d79846c1fba20a33
9b28a7a137cc8d558e1ce2ba4160db4f
9ae18d17f03b882d2107fceb46e5ed5f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1817984910847115264
spelling Collantes Inga, Zoila MercedesMeza Carhuancho, Juan LuisVertiz-Osores, Jacinto JoaquinCueva-Rios, Maria AlinaFuster-Guillen, DorisOcaña-Fernández, Yolvi2023-04-28T17:04:08Z2023-04-28T17:04:08Z20222073-607Xhttps://hdl.handle.net/20.500.12867/6895International Journal of Communication Networks and Information SecurityThe development of Internet of Things (IoT) applications for creating behavioural and physiological monitoring methods, such as an IoT-based student healthcare monitoring system, has been accelerated by advances in sensor technology. Today, there are an increasing number of students living alone whoare dispersed across large geographic areas, therefore it is important to monitor their health and function. This research propose novel technique in high performance modelling for health monitoring system by 5G network based machine learning analysis. Here the input is collected as EEG brain waves which are monitored and collected through 5G networks. This input EEG waves has been processed and obtained as fragments and noise removal is carried out. The processed EEG wave fragments has been extracted using K-adaptive reinforcement learning. this extracted features has been classified using naïve bayes gradient feed forward neural network. The performance analysis shows comparative analysis between proposed and existing technique in terms of accuracy, precision, recall, F-1 score, RMSE and MAP. Proposed technique attained accuracy of 95%, precision of 85%, recall of 79%, F-1 measure of 68%, RMSE of 52% and MAP of 66%.Campus San Juan de Luriganchoapplication/pdfspaAuricle Global Society of Education and ResearchPKInternational Journal of Communication Networks and Information Security;vol. 14, n° 3info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPInternet of thingsMachine learningHealth careArtificial neural networkshttps://purl.org/pe-repo/ocde/ford#1.02.00Machine learning algorithms for high performance modelling in health monitoring system based on 5GNetworksinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALZ.Collantes_Articulo_2023.pdfZ.Collantes_Articulo_2023.pdfapplication/pdf927186http://repositorio.utp.edu.pe/bitstream/20.500.12867/6895/1/Z.Collantes_Articulo_2023.pdf924541e1bb70b5670ded973d4d6a1aebMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/6895/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTZ.Collantes_Articulo_2023.pdf.txtZ.Collantes_Articulo_2023.pdf.txtExtracted texttext/plain41558http://repositorio.utp.edu.pe/bitstream/20.500.12867/6895/3/Z.Collantes_Articulo_2023.pdf.txt9b28a7a137cc8d558e1ce2ba4160db4fMD53THUMBNAILZ.Collantes_Articulo_2023.pdf.jpgZ.Collantes_Articulo_2023.pdf.jpgGenerated Thumbnailimage/jpeg22700http://repositorio.utp.edu.pe/bitstream/20.500.12867/6895/4/Z.Collantes_Articulo_2023.pdf.jpg9ae18d17f03b882d2107fceb46e5ed5fMD5420.500.12867/6895oai:repositorio.utp.edu.pe:20.500.12867/68952023-04-28 14:03:59.505Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.905282
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).