Weed identification technique in basil crops using computer vision

Descripción del Articulo

The promotion of organic and ecological production seeks the sustainable and competitive growth of organic crops in countries like Peru. In this context, agro-exportation is characterized by-products such as fruit and vegetables where they need to comply with organic certification regulations to ent...

Descripción completa

Detalles Bibliográficos
Autores: Yauri Rodríguez, Ricardo, Guzman Rojas, Brayan Joel, Hinostroza Gonzales, Alan, Gamero, Vanessa
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/7803
Enlace del recurso:https://hdl.handle.net/20.500.12867/7803
http://doi.org/10.37394/23202.2023.22.64
Nivel de acceso:acceso abierto
Materia:Agriculture
Crops
Image processing
Computer vision
https://purl.org/pe-repo/ocde/ford#1.02.00
https://purl.org/pe-repo/ocde/ford#4.01.01
id UTPD_f21b03d793d5f4138ca547fdf21e8f61
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/7803
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Weed identification technique in basil crops using computer vision
title Weed identification technique in basil crops using computer vision
spellingShingle Weed identification technique in basil crops using computer vision
Yauri Rodríguez, Ricardo
Agriculture
Crops
Image processing
Computer vision
https://purl.org/pe-repo/ocde/ford#1.02.00
https://purl.org/pe-repo/ocde/ford#4.01.01
title_short Weed identification technique in basil crops using computer vision
title_full Weed identification technique in basil crops using computer vision
title_fullStr Weed identification technique in basil crops using computer vision
title_full_unstemmed Weed identification technique in basil crops using computer vision
title_sort Weed identification technique in basil crops using computer vision
author Yauri Rodríguez, Ricardo
author_facet Yauri Rodríguez, Ricardo
Guzman Rojas, Brayan Joel
Hinostroza Gonzales, Alan
Gamero, Vanessa
author_role author
author2 Guzman Rojas, Brayan Joel
Hinostroza Gonzales, Alan
Gamero, Vanessa
author2_role author
author
author
dc.contributor.author.fl_str_mv Yauri Rodríguez, Ricardo
Guzman Rojas, Brayan Joel
Hinostroza Gonzales, Alan
Gamero, Vanessa
dc.subject.es_PE.fl_str_mv Agriculture
Crops
Image processing
Computer vision
topic Agriculture
Crops
Image processing
Computer vision
https://purl.org/pe-repo/ocde/ford#1.02.00
https://purl.org/pe-repo/ocde/ford#4.01.01
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.02.00
https://purl.org/pe-repo/ocde/ford#4.01.01
description The promotion of organic and ecological production seeks the sustainable and competitive growth of organic crops in countries like Peru. In this context, agro-exportation is characterized by-products such as fruit and vegetables where they need to comply with organic certification regulations to enter products into countries like the US, where it is necessary to certify that weed control is carried out using biodegradable materials, flames, heat, media electric or manual weeding, this being a problem for some productive organizations. The problem is related to the need to differentiate between the crop and the weed as described above, by having image recognition technology tools with Deep Learning. Therefore, the objective of this article is to demonstrate how an artificial intelligence model based on computer vision can contribute to the identification of weeds in basil plots. An iterative and incremental development methodology is used to build the system. In addition, this is complemented by a Cross Industry Standard Process for Data Mining methodology for the evaluation of computer vision models using tools such as YOLO and Python language for weed identification in basil crops. As a result of the work, various Artificial Intelligence algorithms based on neural networks have been identified considering the use of the YOLO tool, where the trained models have shown an efficiency of 69.70%, with 3 hours of training, observing that, if used longer training time, the neural network will get better results
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-10-27T15:47:27Z
dc.date.available.none.fl_str_mv 2023-10-27T15:47:27Z
dc.date.issued.fl_str_mv 2023
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2224-2678
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/7803
dc.identifier.journal.es_PE.fl_str_mv WSEAS Transactions on Systems
dc.identifier.doi.none.fl_str_mv http://doi.org/10.37394/23202.2023.22.64
identifier_str_mv 2224-2678
WSEAS Transactions on Systems
url https://hdl.handle.net/20.500.12867/7803
http://doi.org/10.37394/23202.2023.22.64
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartofseries.none.fl_str_mv WSEAS Transactions on Systems;vol. 22
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv World Scientific and Engineering Academy and Society
dc.publisher.country.es_PE.fl_str_mv GR
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv http://repositorio.utp.edu.pe/bitstream/20.500.12867/7803/1/R.Yauri_B.Guzman_A.Hinostroza_Articulo_2023.pdf
http://repositorio.utp.edu.pe/bitstream/20.500.12867/7803/3/R.Yauri_B.Guzman_A.Hinostroza_Articulo_2023.pdf.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/7803/4/R.Yauri_B.Guzman_A.Hinostroza_Articulo_2023.pdf.jpg
http://repositorio.utp.edu.pe/bitstream/20.500.12867/7803/2/license.txt
bitstream.checksum.fl_str_mv 1798edc23a964185cadb71eb71788517
fec34e4e5a791fbb06608cc265507058
340a9c46bc5e7706ea46597543e00dcb
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1817984942001356800
spelling Yauri Rodríguez, RicardoGuzman Rojas, Brayan JoelHinostroza Gonzales, AlanGamero, Vanessa2023-10-27T15:47:27Z2023-10-27T15:47:27Z20232224-2678https://hdl.handle.net/20.500.12867/7803WSEAS Transactions on Systemshttp://doi.org/10.37394/23202.2023.22.64The promotion of organic and ecological production seeks the sustainable and competitive growth of organic crops in countries like Peru. In this context, agro-exportation is characterized by-products such as fruit and vegetables where they need to comply with organic certification regulations to enter products into countries like the US, where it is necessary to certify that weed control is carried out using biodegradable materials, flames, heat, media electric or manual weeding, this being a problem for some productive organizations. The problem is related to the need to differentiate between the crop and the weed as described above, by having image recognition technology tools with Deep Learning. Therefore, the objective of this article is to demonstrate how an artificial intelligence model based on computer vision can contribute to the identification of weeds in basil plots. An iterative and incremental development methodology is used to build the system. In addition, this is complemented by a Cross Industry Standard Process for Data Mining methodology for the evaluation of computer vision models using tools such as YOLO and Python language for weed identification in basil crops. As a result of the work, various Artificial Intelligence algorithms based on neural networks have been identified considering the use of the YOLO tool, where the trained models have shown an efficiency of 69.70%, with 3 hours of training, observing that, if used longer training time, the neural network will get better resultsCampus Lima Centroapplication/pdfengWorld Scientific and Engineering Academy and SocietyGRWSEAS Transactions on Systems;vol. 22info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPAgricultureCropsImage processingComputer visionhttps://purl.org/pe-repo/ocde/ford#1.02.00https://purl.org/pe-repo/ocde/ford#4.01.01Weed identification technique in basil crops using computer visioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALR.Yauri_B.Guzman_A.Hinostroza_Articulo_2023.pdfR.Yauri_B.Guzman_A.Hinostroza_Articulo_2023.pdfapplication/pdf1079411http://repositorio.utp.edu.pe/bitstream/20.500.12867/7803/1/R.Yauri_B.Guzman_A.Hinostroza_Articulo_2023.pdf1798edc23a964185cadb71eb71788517MD51TEXTR.Yauri_B.Guzman_A.Hinostroza_Articulo_2023.pdf.txtR.Yauri_B.Guzman_A.Hinostroza_Articulo_2023.pdf.txtExtracted texttext/plain31679http://repositorio.utp.edu.pe/bitstream/20.500.12867/7803/3/R.Yauri_B.Guzman_A.Hinostroza_Articulo_2023.pdf.txtfec34e4e5a791fbb06608cc265507058MD53THUMBNAILR.Yauri_B.Guzman_A.Hinostroza_Articulo_2023.pdf.jpgR.Yauri_B.Guzman_A.Hinostroza_Articulo_2023.pdf.jpgGenerated Thumbnailimage/jpeg26020http://repositorio.utp.edu.pe/bitstream/20.500.12867/7803/4/R.Yauri_B.Guzman_A.Hinostroza_Articulo_2023.pdf.jpg340a9c46bc5e7706ea46597543e00dcbMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/7803/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5220.500.12867/7803oai:repositorio.utp.edu.pe:20.500.12867/78032023-10-27 11:05:45.82Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.977305
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).