Weed identification technique in basil crops using computer vision
Descripción del Articulo
The promotion of organic and ecological production seeks the sustainable and competitive growth of organic crops in countries like Peru. In this context, agro-exportation is characterized by-products such as fruit and vegetables where they need to comply with organic certification regulations to ent...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad Tecnológica del Perú |
| Repositorio: | UTP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/7803 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12867/7803 |
| Nivel de acceso: | acceso abierto |
| Materia: | Agriculture Crops Image processing Computer vision https://purl.org/pe-repo/ocde/ford#1.02.00 https://purl.org/pe-repo/ocde/ford#4.01.01 |
| id |
UTPD_f21b03d793d5f4138ca547fdf21e8f61 |
|---|---|
| oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/7803 |
| network_acronym_str |
UTPD |
| network_name_str |
UTP-Institucional |
| repository_id_str |
4782 |
| dc.title.es_PE.fl_str_mv |
Weed identification technique in basil crops using computer vision |
| title |
Weed identification technique in basil crops using computer vision |
| spellingShingle |
Weed identification technique in basil crops using computer vision Yauri Rodríguez, Ricardo Agriculture Crops Image processing Computer vision https://purl.org/pe-repo/ocde/ford#1.02.00 https://purl.org/pe-repo/ocde/ford#4.01.01 |
| title_short |
Weed identification technique in basil crops using computer vision |
| title_full |
Weed identification technique in basil crops using computer vision |
| title_fullStr |
Weed identification technique in basil crops using computer vision |
| title_full_unstemmed |
Weed identification technique in basil crops using computer vision |
| title_sort |
Weed identification technique in basil crops using computer vision |
| author |
Yauri Rodríguez, Ricardo |
| author_facet |
Yauri Rodríguez, Ricardo Guzman Rojas, Brayan Joel Hinostroza Gonzales, Alan Gamero, Vanessa |
| author_role |
author |
| author2 |
Guzman Rojas, Brayan Joel Hinostroza Gonzales, Alan Gamero, Vanessa |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Yauri Rodríguez, Ricardo Guzman Rojas, Brayan Joel Hinostroza Gonzales, Alan Gamero, Vanessa |
| dc.subject.es_PE.fl_str_mv |
Agriculture Crops Image processing Computer vision |
| topic |
Agriculture Crops Image processing Computer vision https://purl.org/pe-repo/ocde/ford#1.02.00 https://purl.org/pe-repo/ocde/ford#4.01.01 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.02.00 https://purl.org/pe-repo/ocde/ford#4.01.01 |
| description |
The promotion of organic and ecological production seeks the sustainable and competitive growth of organic crops in countries like Peru. In this context, agro-exportation is characterized by-products such as fruit and vegetables where they need to comply with organic certification regulations to enter products into countries like the US, where it is necessary to certify that weed control is carried out using biodegradable materials, flames, heat, media electric or manual weeding, this being a problem for some productive organizations. The problem is related to the need to differentiate between the crop and the weed as described above, by having image recognition technology tools with Deep Learning. Therefore, the objective of this article is to demonstrate how an artificial intelligence model based on computer vision can contribute to the identification of weeds in basil plots. An iterative and incremental development methodology is used to build the system. In addition, this is complemented by a Cross Industry Standard Process for Data Mining methodology for the evaluation of computer vision models using tools such as YOLO and Python language for weed identification in basil crops. As a result of the work, various Artificial Intelligence algorithms based on neural networks have been identified considering the use of the YOLO tool, where the trained models have shown an efficiency of 69.70%, with 3 hours of training, observing that, if used longer training time, the neural network will get better results |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-10-27T15:47:27Z |
| dc.date.available.none.fl_str_mv |
2023-10-27T15:47:27Z |
| dc.date.issued.fl_str_mv |
2023 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
2224-2678 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/7803 |
| dc.identifier.journal.es_PE.fl_str_mv |
WSEAS Transactions on Systems |
| identifier_str_mv |
2224-2678 WSEAS Transactions on Systems |
| url |
https://hdl.handle.net/20.500.12867/7803 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofseries.none.fl_str_mv |
WSEAS Transactions on Systems;vol. 22 |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
World Scientific and Engineering Academy and Society |
| dc.publisher.country.es_PE.fl_str_mv |
GR |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
| dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
| instname_str |
Universidad Tecnológica del Perú |
| instacron_str |
UTP |
| institution |
UTP |
| reponame_str |
UTP-Institucional |
| collection |
UTP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/693f6ed7-129b-4043-ae47-3dbf9cf0b6a9/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/871552fa-129b-4617-81b3-09fbfb15a769/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/7693b351-548f-403e-8d58-921d78fc367e/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/076656a6-eab2-47d1-9e33-a5e41801d4a1/download |
| bitstream.checksum.fl_str_mv |
1798edc23a964185cadb71eb71788517 0743c3db1dbd6f29d41ea356a876aaf9 91d45055c00d7b8f751d0570e2b1e58a 8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de la Universidad Tecnológica del Perú |
| repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
| _version_ |
1852865854838931456 |
| spelling |
Yauri Rodríguez, RicardoGuzman Rojas, Brayan JoelHinostroza Gonzales, AlanGamero, Vanessa2023-10-27T15:47:27Z2023-10-27T15:47:27Z20232224-2678https://hdl.handle.net/20.500.12867/7803WSEAS Transactions on SystemsThe promotion of organic and ecological production seeks the sustainable and competitive growth of organic crops in countries like Peru. In this context, agro-exportation is characterized by-products such as fruit and vegetables where they need to comply with organic certification regulations to enter products into countries like the US, where it is necessary to certify that weed control is carried out using biodegradable materials, flames, heat, media electric or manual weeding, this being a problem for some productive organizations. The problem is related to the need to differentiate between the crop and the weed as described above, by having image recognition technology tools with Deep Learning. Therefore, the objective of this article is to demonstrate how an artificial intelligence model based on computer vision can contribute to the identification of weeds in basil plots. An iterative and incremental development methodology is used to build the system. In addition, this is complemented by a Cross Industry Standard Process for Data Mining methodology for the evaluation of computer vision models using tools such as YOLO and Python language for weed identification in basil crops. As a result of the work, various Artificial Intelligence algorithms based on neural networks have been identified considering the use of the YOLO tool, where the trained models have shown an efficiency of 69.70%, with 3 hours of training, observing that, if used longer training time, the neural network will get better resultsCampus Lima Centroapplication/pdfengWorld Scientific and Engineering Academy and SocietyGRWSEAS Transactions on Systems;vol. 22info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPAgricultureCropsImage processingComputer visionhttps://purl.org/pe-repo/ocde/ford#1.02.00https://purl.org/pe-repo/ocde/ford#4.01.01Weed identification technique in basil crops using computer visioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALR.Yauri_B.Guzman_A.Hinostroza_Articulo_2023.pdfR.Yauri_B.Guzman_A.Hinostroza_Articulo_2023.pdfapplication/pdf1079411https://repositorio.utp.edu.pe/backend/api/core/bitstreams/693f6ed7-129b-4043-ae47-3dbf9cf0b6a9/download1798edc23a964185cadb71eb71788517MD51TEXTR.Yauri_B.Guzman_A.Hinostroza_Articulo_2023.pdf.txtR.Yauri_B.Guzman_A.Hinostroza_Articulo_2023.pdf.txtExtracted texttext/plain32300https://repositorio.utp.edu.pe/backend/api/core/bitstreams/871552fa-129b-4617-81b3-09fbfb15a769/download0743c3db1dbd6f29d41ea356a876aaf9MD55THUMBNAILR.Yauri_B.Guzman_A.Hinostroza_Articulo_2023.pdf.jpgR.Yauri_B.Guzman_A.Hinostroza_Articulo_2023.pdf.jpgGenerated Thumbnailimage/jpeg49914https://repositorio.utp.edu.pe/backend/api/core/bitstreams/7693b351-548f-403e-8d58-921d78fc367e/download91d45055c00d7b8f751d0570e2b1e58aMD56LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/076656a6-eab2-47d1-9e33-a5e41801d4a1/download8a4605be74aa9ea9d79846c1fba20a33MD5220.500.12867/7803oai:repositorio.utp.edu.pe:20.500.12867/78032025-11-30 18:08:02.9http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.396094 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).