Exploratory data analysis of community behavior towards the generation of solid waste using k-means and social indicators

Descripción del Articulo

In Peru, solid waste accumulation has been constant for decades and impacts 72% of local governments, affecting 42% of the population. These numbers show new tools are required to better understand this phenomenon and develop appropriate mitigation methods. In this light, this research proposes an e...

Descripción completa

Detalles Bibliográficos
Autores: Izquierdo Horna, Luis Antonio, Zevallos Ruiz, José Augusto, Damazo Amante, Miker, Yanayaco Lazo, Dayvis Junior
Formato: artículo
Fecha de Publicación:2021
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/4617
Enlace del recurso:https://hdl.handle.net/20.500.12867/4617
https://doi.org/10.18280/ijsdp.160508
Nivel de acceso:acceso abierto
Materia:Machine learning
Social indicators
Waste management
Aprendizaje automático
Indicadores sociales
Residuos sólidos
https://purl.org/pe-repo/ocde/ford#5.00.00
id UTPD_daf9f98860189661a947018f89059cff
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/4617
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Exploratory data analysis of community behavior towards the generation of solid waste using k-means and social indicators
title Exploratory data analysis of community behavior towards the generation of solid waste using k-means and social indicators
spellingShingle Exploratory data analysis of community behavior towards the generation of solid waste using k-means and social indicators
Izquierdo Horna, Luis Antonio
Machine learning
Social indicators
Waste management
Aprendizaje automático
Indicadores sociales
Residuos sólidos
https://purl.org/pe-repo/ocde/ford#5.00.00
title_short Exploratory data analysis of community behavior towards the generation of solid waste using k-means and social indicators
title_full Exploratory data analysis of community behavior towards the generation of solid waste using k-means and social indicators
title_fullStr Exploratory data analysis of community behavior towards the generation of solid waste using k-means and social indicators
title_full_unstemmed Exploratory data analysis of community behavior towards the generation of solid waste using k-means and social indicators
title_sort Exploratory data analysis of community behavior towards the generation of solid waste using k-means and social indicators
author Izquierdo Horna, Luis Antonio
author_facet Izquierdo Horna, Luis Antonio
Zevallos Ruiz, José Augusto
Damazo Amante, Miker
Yanayaco Lazo, Dayvis Junior
author_role author
author2 Zevallos Ruiz, José Augusto
Damazo Amante, Miker
Yanayaco Lazo, Dayvis Junior
author2_role author
author
author
dc.contributor.author.fl_str_mv Izquierdo Horna, Luis Antonio
Zevallos Ruiz, José Augusto
Damazo Amante, Miker
Yanayaco Lazo, Dayvis Junior
dc.subject.es_PE.fl_str_mv Machine learning
Social indicators
Waste management
Aprendizaje automático
Indicadores sociales
Residuos sólidos
topic Machine learning
Social indicators
Waste management
Aprendizaje automático
Indicadores sociales
Residuos sólidos
https://purl.org/pe-repo/ocde/ford#5.00.00
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#5.00.00
description In Peru, solid waste accumulation has been constant for decades and impacts 72% of local governments, affecting 42% of the population. These numbers show new tools are required to better understand this phenomenon and develop appropriate mitigation methods. In this light, this research proposes an exploratory analysis of the study population against the accumulation of solid waste. For this, the study proposes the segmentation of a specific population through a set of social indicators grouped into three categories of analysis (i.e., sociocultural, sociodemographic, and socioeconomic) and, in turn, assess the geographic proximity between each group of people segmented according to the parameters used for this study, and the informal points of accumulation of MSW. To segment the study population, an unsupervised classification model (i.e., K-means) was used. For methodological purposes, the Puente Piedra district was chosen as a case study. The results show that the predominant population is framed between the ages of 36 to 45, with an intermediate educational level (i.e., secondary school) and an approximate monthly income of $ 300. In addition, the predominant family structure includes up to four members living in the same household. Finally, it is observed that the behavior of people who live close as neighbors is similar and is also related to the geographic location of the dumps.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-11-22T19:44:47Z
dc.date.available.none.fl_str_mv 2021-11-22T19:44:47Z
dc.date.issued.fl_str_mv 2021
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 1743-761X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/4617
dc.identifier.journal.es_PE.fl_str_mv International Journal of Sustainable Development and Planning
dc.identifier.doi.none.fl_str_mv https://doi.org/10.18280/ijsdp.160508
identifier_str_mv 1743-761X
International Journal of Sustainable Development and Planning
url https://hdl.handle.net/20.500.12867/4617
https://doi.org/10.18280/ijsdp.160508
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartofseries.none.fl_str_mv InternationaJournal of Sustainable Development and Planning;vol. 16, n° 5, pp. 875-881
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv International Information and Engineering Technology Association
dc.publisher.country.es_PE.fl_str_mv GB
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv http://repositorio.utp.edu.pe/bitstream/20.500.12867/4617/1/L.Izquierdo_J.Zevallos_M.Damazo_D.Yanayaco_Articulo_IJSDP_eng_2021.pdf
http://repositorio.utp.edu.pe/bitstream/20.500.12867/4617/2/license.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/4617/3/L.Izquierdo_J.Zevallos_M.Damazo_D.Yanayaco_Articulo_IJSDP_eng_2021.pdf.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/4617/4/L.Izquierdo_J.Zevallos_M.Damazo_D.Yanayaco_Articulo_IJSDP_eng_2021.pdf.jpg
bitstream.checksum.fl_str_mv 14430e0bcda87ad931eb28c173366647
8a4605be74aa9ea9d79846c1fba20a33
c8148e84ca638ced31b5f9195d154065
8934c13f8d8906055cf3e1c7c751501c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1817984821006172160
spelling Izquierdo Horna, Luis AntonioZevallos Ruiz, José AugustoDamazo Amante, MikerYanayaco Lazo, Dayvis Junior2021-11-22T19:44:47Z2021-11-22T19:44:47Z20211743-761Xhttps://hdl.handle.net/20.500.12867/4617International Journal of Sustainable Development and Planninghttps://doi.org/10.18280/ijsdp.160508In Peru, solid waste accumulation has been constant for decades and impacts 72% of local governments, affecting 42% of the population. These numbers show new tools are required to better understand this phenomenon and develop appropriate mitigation methods. In this light, this research proposes an exploratory analysis of the study population against the accumulation of solid waste. For this, the study proposes the segmentation of a specific population through a set of social indicators grouped into three categories of analysis (i.e., sociocultural, sociodemographic, and socioeconomic) and, in turn, assess the geographic proximity between each group of people segmented according to the parameters used for this study, and the informal points of accumulation of MSW. To segment the study population, an unsupervised classification model (i.e., K-means) was used. For methodological purposes, the Puente Piedra district was chosen as a case study. The results show that the predominant population is framed between the ages of 36 to 45, with an intermediate educational level (i.e., secondary school) and an approximate monthly income of $ 300. In addition, the predominant family structure includes up to four members living in the same household. Finally, it is observed that the behavior of people who live close as neighbors is similar and is also related to the geographic location of the dumps.Campus Lima Centroapplication/pdfengInternational Information and Engineering Technology AssociationGBInternationaJournal of Sustainable Development and Planning;vol. 16, n° 5, pp. 875-881info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPMachine learningSocial indicatorsWaste managementAprendizaje automáticoIndicadores socialesResiduos sólidoshttps://purl.org/pe-repo/ocde/ford#5.00.00Exploratory data analysis of community behavior towards the generation of solid waste using k-means and social indicatorsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALL.Izquierdo_J.Zevallos_M.Damazo_D.Yanayaco_Articulo_IJSDP_eng_2021.pdfL.Izquierdo_J.Zevallos_M.Damazo_D.Yanayaco_Articulo_IJSDP_eng_2021.pdfapplication/pdf1128897http://repositorio.utp.edu.pe/bitstream/20.500.12867/4617/1/L.Izquierdo_J.Zevallos_M.Damazo_D.Yanayaco_Articulo_IJSDP_eng_2021.pdf14430e0bcda87ad931eb28c173366647MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/4617/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTL.Izquierdo_J.Zevallos_M.Damazo_D.Yanayaco_Articulo_IJSDP_eng_2021.pdf.txtL.Izquierdo_J.Zevallos_M.Damazo_D.Yanayaco_Articulo_IJSDP_eng_2021.pdf.txtExtracted texttext/plain34587http://repositorio.utp.edu.pe/bitstream/20.500.12867/4617/3/L.Izquierdo_J.Zevallos_M.Damazo_D.Yanayaco_Articulo_IJSDP_eng_2021.pdf.txtc8148e84ca638ced31b5f9195d154065MD53THUMBNAILL.Izquierdo_J.Zevallos_M.Damazo_D.Yanayaco_Articulo_IJSDP_eng_2021.pdf.jpgL.Izquierdo_J.Zevallos_M.Damazo_D.Yanayaco_Articulo_IJSDP_eng_2021.pdf.jpgGenerated Thumbnailimage/jpeg25771http://repositorio.utp.edu.pe/bitstream/20.500.12867/4617/4/L.Izquierdo_J.Zevallos_M.Damazo_D.Yanayaco_Articulo_IJSDP_eng_2021.pdf.jpg8934c13f8d8906055cf3e1c7c751501cMD5420.500.12867/4617oai:repositorio.utp.edu.pe:20.500.12867/46172022-08-17 17:25:35.695Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.940932
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).