Application of classification algorithms for smishing detection on mobile devices: literature review

Descripción del Articulo

Smishing is a form of phishing carried out via mobile devices to steal confidential information from victims. The number of smishing attacks has increased in recent years due to the large number of users acquiring these easy-to-use and functional devices. This literature review objective is to exami...

Descripción completa

Detalles Bibliográficos
Autores: Calero Sinche, Dylan Faredh, Acuña Meléndez, María, Ovalle, Christian
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/14517
Enlace del recurso:https://hdl.handle.net/20.500.12867/14517
https://doi.org/10.11591/ijai.v13.i4.pp3750-3760
Nivel de acceso:acceso abierto
Materia:Artificial intelligence
Machine learning
Mobile phishing
Mobile security
https://purl.org/pe-repo/ocde/ford#2.02.04
id UTPD_d08760701f3c38cd6e39cf938bddd5a8
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/14517
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Application of classification algorithms for smishing detection on mobile devices: literature review
title Application of classification algorithms for smishing detection on mobile devices: literature review
spellingShingle Application of classification algorithms for smishing detection on mobile devices: literature review
Calero Sinche, Dylan Faredh
Artificial intelligence
Machine learning
Mobile phishing
Mobile security
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Application of classification algorithms for smishing detection on mobile devices: literature review
title_full Application of classification algorithms for smishing detection on mobile devices: literature review
title_fullStr Application of classification algorithms for smishing detection on mobile devices: literature review
title_full_unstemmed Application of classification algorithms for smishing detection on mobile devices: literature review
title_sort Application of classification algorithms for smishing detection on mobile devices: literature review
author Calero Sinche, Dylan Faredh
author_facet Calero Sinche, Dylan Faredh
Acuña Meléndez, María
Ovalle, Christian
author_role author
author2 Acuña Meléndez, María
Ovalle, Christian
author2_role author
author
dc.contributor.author.fl_str_mv Calero Sinche, Dylan Faredh
Acuña Meléndez, María
Ovalle, Christian
dc.subject.es_PE.fl_str_mv Artificial intelligence
Machine learning
Mobile phishing
Mobile security
topic Artificial intelligence
Machine learning
Mobile phishing
Mobile security
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description Smishing is a form of phishing carried out via mobile devices to steal confidential information from victims. The number of smishing attacks has increased in recent years due to the large number of users acquiring these easy-to-use and functional devices. This literature review objective is to examine the techniques and methods used in smishing attacks using classification algorithms. To do so, we conducted a manual search process and selected 155 articles from Scopus and 29 articles from access to research for development and innovation (ARDI). Of these, 36 articles met the inclusion criteria. In addition, the algorithms most commonly used by the studies were random forest classification techniques, decision trees, and neural networks. These studies analyzed various machine learning models for detecting phishing and smishing messages. The attack simulation scenarios included generating web pages, sending fake links (URLs), and installing malicious applications. The analysis evaluated web pages and SMS messages using a database containing legitimate as well as smishing messages. Based on the results, it is suggested to combine these methods to improve detection performance, making it more robust and promising.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2025-11-08T17:20:36Z
dc.date.available.none.fl_str_mv 2025-11-08T17:20:36Z
dc.date.issued.fl_str_mv 2024
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2252-8938
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/14517
dc.identifier.journal.es_PE.fl_str_mv IAES International Journal of Artificial Intelligence
dc.identifier.doi.none.fl_str_mv https://doi.org/10.11591/ijai.v13.i4.pp3750-3760
identifier_str_mv 2252-8938
IAES International Journal of Artificial Intelligence
url https://hdl.handle.net/20.500.12867/14517
https://doi.org/10.11591/ijai.v13.i4.pp3750-3760
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-sa/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Institute of Advanced Engineering and Science
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv https://repositorio.utp.edu.pe/backend/api/core/bitstreams/2fdc9c79-2821-43b4-bff8-5c9c5cab94ba/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0faa6c00-d4c8-4d49-9f0f-e43e1eddd6ab/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/292f5f19-a19a-4906-89e3-5e75b20d13dc/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/6783ad7e-1d42-48f2-a193-1920f5698244/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/4c183f69-4b5e-4f5c-89a0-6e9c86cd0497/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/48239583-94fb-46f0-95c1-3c3311cb67fa/download
bitstream.checksum.fl_str_mv a06f7f58a8c02c4831be350527eac01a
8a4605be74aa9ea9d79846c1fba20a33
dd9a23685ce289abb54f4438f56bdb46
e6fccfabe772d4a17b4ec4c07a973490
c8a24d8a2ed5fb5b963c49cb57c8716d
83f91636e0c87d50e16abebcff28278a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1852865517224722432
spelling Calero Sinche, Dylan FaredhAcuña Meléndez, MaríaOvalle, Christian2025-11-08T17:20:36Z2025-11-08T17:20:36Z20242252-8938https://hdl.handle.net/20.500.12867/14517IAES International Journal of Artificial Intelligencehttps://doi.org/10.11591/ijai.v13.i4.pp3750-3760Smishing is a form of phishing carried out via mobile devices to steal confidential information from victims. The number of smishing attacks has increased in recent years due to the large number of users acquiring these easy-to-use and functional devices. This literature review objective is to examine the techniques and methods used in smishing attacks using classification algorithms. To do so, we conducted a manual search process and selected 155 articles from Scopus and 29 articles from access to research for development and innovation (ARDI). Of these, 36 articles met the inclusion criteria. In addition, the algorithms most commonly used by the studies were random forest classification techniques, decision trees, and neural networks. These studies analyzed various machine learning models for detecting phishing and smishing messages. The attack simulation scenarios included generating web pages, sending fake links (URLs), and installing malicious applications. The analysis evaluated web pages and SMS messages using a database containing legitimate as well as smishing messages. Based on the results, it is suggested to combine these methods to improve detection performance, making it more robust and promising.Campus Lima Centroapplication/pdfengInstitute of Advanced Engineering and Scienceinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPArtificial intelligenceMachine learningMobile phishingMobile securityhttps://purl.org/pe-repo/ocde/ford#2.02.04Application of classification algorithms for smishing detection on mobile devices: literature reviewinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALD.Calero_M.Acuña_C.Ovalle_Articulo_2024.pdfD.Calero_M.Acuña_C.Ovalle_Articulo_2024.pdfapplication/pdf422360https://repositorio.utp.edu.pe/backend/api/core/bitstreams/2fdc9c79-2821-43b4-bff8-5c9c5cab94ba/downloada06f7f58a8c02c4831be350527eac01aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0faa6c00-d4c8-4d49-9f0f-e43e1eddd6ab/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTCalero.D_Acuña.M_Ovalle.C_Articulo_2024.pdf.txtCalero.D_Acuña.M_Ovalle.C_Articulo_2024.pdf.txtExtracted texttext/plain54077https://repositorio.utp.edu.pe/backend/api/core/bitstreams/292f5f19-a19a-4906-89e3-5e75b20d13dc/downloaddd9a23685ce289abb54f4438f56bdb46MD53D.Calero_M.Acuña_C.Ovalle_Articulo_2024.pdf.txtD.Calero_M.Acuña_C.Ovalle_Articulo_2024.pdf.txtExtracted texttext/plain55426https://repositorio.utp.edu.pe/backend/api/core/bitstreams/6783ad7e-1d42-48f2-a193-1920f5698244/downloade6fccfabe772d4a17b4ec4c07a973490MD57THUMBNAILCalero.D_Acuña.M_Ovalle.C_Articulo_2024.pdf.jpgCalero.D_Acuña.M_Ovalle.C_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg20913https://repositorio.utp.edu.pe/backend/api/core/bitstreams/4c183f69-4b5e-4f5c-89a0-6e9c86cd0497/downloadc8a24d8a2ed5fb5b963c49cb57c8716dMD54D.Calero_M.Acuña_C.Ovalle_Articulo_2024.pdf.jpgD.Calero_M.Acuña_C.Ovalle_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg39195https://repositorio.utp.edu.pe/backend/api/core/bitstreams/48239583-94fb-46f0-95c1-3c3311cb67fa/download83f91636e0c87d50e16abebcff28278aMD5820.500.12867/14517oai:repositorio.utp.edu.pe:20.500.12867/145172025-11-30 16:55:59.415https://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.926692
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).