Application of classification algorithms for smishing detection on mobile devices: literature review
Descripción del Articulo
Smishing is a form of phishing carried out via mobile devices to steal confidential information from victims. The number of smishing attacks has increased in recent years due to the large number of users acquiring these easy-to-use and functional devices. This literature review objective is to exami...
| Autores: | , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad Tecnológica del Perú |
| Repositorio: | UTP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/14517 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12867/14517 https://doi.org/10.11591/ijai.v13.i4.pp3750-3760 |
| Nivel de acceso: | acceso abierto |
| Materia: | Artificial intelligence Machine learning Mobile phishing Mobile security https://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
UTPD_d08760701f3c38cd6e39cf938bddd5a8 |
|---|---|
| oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/14517 |
| network_acronym_str |
UTPD |
| network_name_str |
UTP-Institucional |
| repository_id_str |
4782 |
| dc.title.es_PE.fl_str_mv |
Application of classification algorithms for smishing detection on mobile devices: literature review |
| title |
Application of classification algorithms for smishing detection on mobile devices: literature review |
| spellingShingle |
Application of classification algorithms for smishing detection on mobile devices: literature review Calero Sinche, Dylan Faredh Artificial intelligence Machine learning Mobile phishing Mobile security https://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
Application of classification algorithms for smishing detection on mobile devices: literature review |
| title_full |
Application of classification algorithms for smishing detection on mobile devices: literature review |
| title_fullStr |
Application of classification algorithms for smishing detection on mobile devices: literature review |
| title_full_unstemmed |
Application of classification algorithms for smishing detection on mobile devices: literature review |
| title_sort |
Application of classification algorithms for smishing detection on mobile devices: literature review |
| author |
Calero Sinche, Dylan Faredh |
| author_facet |
Calero Sinche, Dylan Faredh Acuña Meléndez, María Ovalle, Christian |
| author_role |
author |
| author2 |
Acuña Meléndez, María Ovalle, Christian |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Calero Sinche, Dylan Faredh Acuña Meléndez, María Ovalle, Christian |
| dc.subject.es_PE.fl_str_mv |
Artificial intelligence Machine learning Mobile phishing Mobile security |
| topic |
Artificial intelligence Machine learning Mobile phishing Mobile security https://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
Smishing is a form of phishing carried out via mobile devices to steal confidential information from victims. The number of smishing attacks has increased in recent years due to the large number of users acquiring these easy-to-use and functional devices. This literature review objective is to examine the techniques and methods used in smishing attacks using classification algorithms. To do so, we conducted a manual search process and selected 155 articles from Scopus and 29 articles from access to research for development and innovation (ARDI). Of these, 36 articles met the inclusion criteria. In addition, the algorithms most commonly used by the studies were random forest classification techniques, decision trees, and neural networks. These studies analyzed various machine learning models for detecting phishing and smishing messages. The attack simulation scenarios included generating web pages, sending fake links (URLs), and installing malicious applications. The analysis evaluated web pages and SMS messages using a database containing legitimate as well as smishing messages. Based on the results, it is suggested to combine these methods to improve detection performance, making it more robust and promising. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2025-11-08T17:20:36Z |
| dc.date.available.none.fl_str_mv |
2025-11-08T17:20:36Z |
| dc.date.issued.fl_str_mv |
2024 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
2252-8938 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/14517 |
| dc.identifier.journal.es_PE.fl_str_mv |
IAES International Journal of Artificial Intelligence |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.11591/ijai.v13.i4.pp3750-3760 |
| identifier_str_mv |
2252-8938 IAES International Journal of Artificial Intelligence |
| url |
https://hdl.handle.net/20.500.12867/14517 https://doi.org/10.11591/ijai.v13.i4.pp3750-3760 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-sa/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Institute of Advanced Engineering and Science |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
| dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
| instname_str |
Universidad Tecnológica del Perú |
| instacron_str |
UTP |
| institution |
UTP |
| reponame_str |
UTP-Institucional |
| collection |
UTP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/2fdc9c79-2821-43b4-bff8-5c9c5cab94ba/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0faa6c00-d4c8-4d49-9f0f-e43e1eddd6ab/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/292f5f19-a19a-4906-89e3-5e75b20d13dc/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/6783ad7e-1d42-48f2-a193-1920f5698244/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/4c183f69-4b5e-4f5c-89a0-6e9c86cd0497/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/48239583-94fb-46f0-95c1-3c3311cb67fa/download |
| bitstream.checksum.fl_str_mv |
a06f7f58a8c02c4831be350527eac01a 8a4605be74aa9ea9d79846c1fba20a33 dd9a23685ce289abb54f4438f56bdb46 e6fccfabe772d4a17b4ec4c07a973490 c8a24d8a2ed5fb5b963c49cb57c8716d 83f91636e0c87d50e16abebcff28278a |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de la Universidad Tecnológica del Perú |
| repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
| _version_ |
1852865517224722432 |
| spelling |
Calero Sinche, Dylan FaredhAcuña Meléndez, MaríaOvalle, Christian2025-11-08T17:20:36Z2025-11-08T17:20:36Z20242252-8938https://hdl.handle.net/20.500.12867/14517IAES International Journal of Artificial Intelligencehttps://doi.org/10.11591/ijai.v13.i4.pp3750-3760Smishing is a form of phishing carried out via mobile devices to steal confidential information from victims. The number of smishing attacks has increased in recent years due to the large number of users acquiring these easy-to-use and functional devices. This literature review objective is to examine the techniques and methods used in smishing attacks using classification algorithms. To do so, we conducted a manual search process and selected 155 articles from Scopus and 29 articles from access to research for development and innovation (ARDI). Of these, 36 articles met the inclusion criteria. In addition, the algorithms most commonly used by the studies were random forest classification techniques, decision trees, and neural networks. These studies analyzed various machine learning models for detecting phishing and smishing messages. The attack simulation scenarios included generating web pages, sending fake links (URLs), and installing malicious applications. The analysis evaluated web pages and SMS messages using a database containing legitimate as well as smishing messages. Based on the results, it is suggested to combine these methods to improve detection performance, making it more robust and promising.Campus Lima Centroapplication/pdfengInstitute of Advanced Engineering and Scienceinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPArtificial intelligenceMachine learningMobile phishingMobile securityhttps://purl.org/pe-repo/ocde/ford#2.02.04Application of classification algorithms for smishing detection on mobile devices: literature reviewinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALD.Calero_M.Acuña_C.Ovalle_Articulo_2024.pdfD.Calero_M.Acuña_C.Ovalle_Articulo_2024.pdfapplication/pdf422360https://repositorio.utp.edu.pe/backend/api/core/bitstreams/2fdc9c79-2821-43b4-bff8-5c9c5cab94ba/downloada06f7f58a8c02c4831be350527eac01aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0faa6c00-d4c8-4d49-9f0f-e43e1eddd6ab/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTCalero.D_Acuña.M_Ovalle.C_Articulo_2024.pdf.txtCalero.D_Acuña.M_Ovalle.C_Articulo_2024.pdf.txtExtracted texttext/plain54077https://repositorio.utp.edu.pe/backend/api/core/bitstreams/292f5f19-a19a-4906-89e3-5e75b20d13dc/downloaddd9a23685ce289abb54f4438f56bdb46MD53D.Calero_M.Acuña_C.Ovalle_Articulo_2024.pdf.txtD.Calero_M.Acuña_C.Ovalle_Articulo_2024.pdf.txtExtracted texttext/plain55426https://repositorio.utp.edu.pe/backend/api/core/bitstreams/6783ad7e-1d42-48f2-a193-1920f5698244/downloade6fccfabe772d4a17b4ec4c07a973490MD57THUMBNAILCalero.D_Acuña.M_Ovalle.C_Articulo_2024.pdf.jpgCalero.D_Acuña.M_Ovalle.C_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg20913https://repositorio.utp.edu.pe/backend/api/core/bitstreams/4c183f69-4b5e-4f5c-89a0-6e9c86cd0497/downloadc8a24d8a2ed5fb5b963c49cb57c8716dMD54D.Calero_M.Acuña_C.Ovalle_Articulo_2024.pdf.jpgD.Calero_M.Acuña_C.Ovalle_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg39195https://repositorio.utp.edu.pe/backend/api/core/bitstreams/48239583-94fb-46f0-95c1-3c3311cb67fa/download83f91636e0c87d50e16abebcff28278aMD5820.500.12867/14517oai:repositorio.utp.edu.pe:20.500.12867/145172025-11-30 16:55:59.415https://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.926692 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).