Machine learning for personal credit evaluation: A systematic review
Descripción del Articulo
The importance of information in today's world as it is a key asset for business growth and innovation. The problem that arises is the lack of understanding of knowledge quality properties, which leads to the development of inefficient knowledge-intensive systems. But knowledge cannot be shared...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2022 |
| Institución: | Universidad Tecnológica del Perú |
| Repositorio: | UTP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/5917 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12867/5917 http://doi.org/10.37394/232018.2022.10.9 |
| Nivel de acceso: | acceso abierto |
| Materia: | Machine learning Risk assessment (Finances) Artificial intelligence https://purl.org/pe-repo/ocde/ford#2.02.03 |
| id |
UTPD_b006b51ea514a0da1a1b94df363d4cc1 |
|---|---|
| oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/5917 |
| network_acronym_str |
UTPD |
| network_name_str |
UTP-Institucional |
| repository_id_str |
4782 |
| dc.title.es_PE.fl_str_mv |
Machine learning for personal credit evaluation: A systematic review |
| title |
Machine learning for personal credit evaluation: A systematic review |
| spellingShingle |
Machine learning for personal credit evaluation: A systematic review Ogosi Auqui, José Antonio Machine learning Risk assessment (Finances) Artificial intelligence https://purl.org/pe-repo/ocde/ford#2.02.03 |
| title_short |
Machine learning for personal credit evaluation: A systematic review |
| title_full |
Machine learning for personal credit evaluation: A systematic review |
| title_fullStr |
Machine learning for personal credit evaluation: A systematic review |
| title_full_unstemmed |
Machine learning for personal credit evaluation: A systematic review |
| title_sort |
Machine learning for personal credit evaluation: A systematic review |
| author |
Ogosi Auqui, José Antonio |
| author_facet |
Ogosi Auqui, José Antonio Cano Chuqui, Jorge Guadalupe Mori, Victor Hugo Obando Pacheco, David Hugo |
| author_role |
author |
| author2 |
Cano Chuqui, Jorge Guadalupe Mori, Victor Hugo Obando Pacheco, David Hugo |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Ogosi Auqui, José Antonio Cano Chuqui, Jorge Guadalupe Mori, Victor Hugo Obando Pacheco, David Hugo |
| dc.subject.es_PE.fl_str_mv |
Machine learning Risk assessment (Finances) Artificial intelligence |
| topic |
Machine learning Risk assessment (Finances) Artificial intelligence https://purl.org/pe-repo/ocde/ford#2.02.03 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.03 |
| description |
The importance of information in today's world as it is a key asset for business growth and innovation. The problem that arises is the lack of understanding of knowledge quality properties, which leads to the development of inefficient knowledge-intensive systems. But knowledge cannot be shared effectively without effective knowledge-intensive systems. Given this situation, the authors must analyze the benefits and believe that machine learning can benefit knowledge management and that machine learning algorithms can further improve knowledge-intensive systems. It also shows that machine learning is very helpful from a practical point of view. Machine learning not only improves knowledge-intensive systems but has powerful theoretical and practical implementations that can open up new areas of research. The objective set out is the comprehensive and systematic literature review of research published between 2018 and 2022, these studies were extracted from several critically important academic sources, with a total of 73 short articles selected. The findings also open up possible research areas for machine learning in knowledge management to generate a competitive advantage in financial institutions. |
| publishDate |
2022 |
| dc.date.accessioned.none.fl_str_mv |
2022-09-05T15:07:34Z |
| dc.date.available.none.fl_str_mv |
2022-09-05T15:07:34Z |
| dc.date.issued.fl_str_mv |
2022 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
2415-1521 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/5917 |
| dc.identifier.journal.es_PE.fl_str_mv |
WSEAS Transactions on Computer Research |
| dc.identifier.doi.none.fl_str_mv |
http://doi.org/10.37394/232018.2022.10.9 |
| identifier_str_mv |
2415-1521 WSEAS Transactions on Computer Research |
| url |
https://hdl.handle.net/20.500.12867/5917 http://doi.org/10.37394/232018.2022.10.9 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartofseries.none.fl_str_mv |
WSEAS Transactions on Computer Research;vol. 10, pp. 62 - 73 |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
World Scientific and Engineering Academy and Society |
| dc.publisher.country.es_PE.fl_str_mv |
GR |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
| dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
| instname_str |
Universidad Tecnológica del Perú |
| instacron_str |
UTP |
| institution |
UTP |
| reponame_str |
UTP-Institucional |
| collection |
UTP-Institucional |
| bitstream.url.fl_str_mv |
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5917/1/J.Ogosi_WSEASTCH_Articulo_eng_2022.pdf http://repositorio.utp.edu.pe/bitstream/20.500.12867/5917/2/license.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/5917/3/J.Ogosi_WSEASTCH_Articulo_eng_2022.pdf.txt http://repositorio.utp.edu.pe/bitstream/20.500.12867/5917/4/J.Ogosi_WSEASTCH_Articulo_eng_2022.pdf.jpg |
| bitstream.checksum.fl_str_mv |
47229ae11cd61ecc2d9d571ce03d910d 8a4605be74aa9ea9d79846c1fba20a33 daaf3e019d4ec5389d2d8d8281cd35ba 9c44bcb8905edd3f07e4e75796f42883 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional de la Universidad Tecnológica del Perú |
| repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
| _version_ |
1817984922771521536 |
| spelling |
Ogosi Auqui, José AntonioCano Chuqui, JorgeGuadalupe Mori, Victor HugoObando Pacheco, David Hugo2022-09-05T15:07:34Z2022-09-05T15:07:34Z20222415-1521https://hdl.handle.net/20.500.12867/5917WSEAS Transactions on Computer Researchhttp://doi.org/10.37394/232018.2022.10.9The importance of information in today's world as it is a key asset for business growth and innovation. The problem that arises is the lack of understanding of knowledge quality properties, which leads to the development of inefficient knowledge-intensive systems. But knowledge cannot be shared effectively without effective knowledge-intensive systems. Given this situation, the authors must analyze the benefits and believe that machine learning can benefit knowledge management and that machine learning algorithms can further improve knowledge-intensive systems. It also shows that machine learning is very helpful from a practical point of view. Machine learning not only improves knowledge-intensive systems but has powerful theoretical and practical implementations that can open up new areas of research. The objective set out is the comprehensive and systematic literature review of research published between 2018 and 2022, these studies were extracted from several critically important academic sources, with a total of 73 short articles selected. The findings also open up possible research areas for machine learning in knowledge management to generate a competitive advantage in financial institutions.Campus Lima Centroapplication/pdfengWorld Scientific and Engineering Academy and SocietyGRWSEAS Transactions on Computer Research;vol. 10, pp. 62 - 73info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPMachine learningRisk assessment (Finances)Artificial intelligencehttps://purl.org/pe-repo/ocde/ford#2.02.03Machine learning for personal credit evaluation: A systematic reviewinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALJ.Ogosi_WSEASTCH_Articulo_eng_2022.pdfJ.Ogosi_WSEASTCH_Articulo_eng_2022.pdfapplication/pdf1445311http://repositorio.utp.edu.pe/bitstream/20.500.12867/5917/1/J.Ogosi_WSEASTCH_Articulo_eng_2022.pdf47229ae11cd61ecc2d9d571ce03d910dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/5917/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTJ.Ogosi_WSEASTCH_Articulo_eng_2022.pdf.txtJ.Ogosi_WSEASTCH_Articulo_eng_2022.pdf.txtExtracted texttext/plain50791http://repositorio.utp.edu.pe/bitstream/20.500.12867/5917/3/J.Ogosi_WSEASTCH_Articulo_eng_2022.pdf.txtdaaf3e019d4ec5389d2d8d8281cd35baMD53THUMBNAILJ.Ogosi_WSEASTCH_Articulo_eng_2022.pdf.jpgJ.Ogosi_WSEASTCH_Articulo_eng_2022.pdf.jpgGenerated Thumbnailimage/jpeg20094http://repositorio.utp.edu.pe/bitstream/20.500.12867/5917/4/J.Ogosi_WSEASTCH_Articulo_eng_2022.pdf.jpg9c44bcb8905edd3f07e4e75796f42883MD5420.500.12867/5917oai:repositorio.utp.edu.pe:20.500.12867/59172022-09-05 11:02:44.959Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.905282 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).