Machine learning for personal credit evaluation: A systematic review

Descripción del Articulo

The importance of information in today's world as it is a key asset for business growth and innovation. The problem that arises is the lack of understanding of knowledge quality properties, which leads to the development of inefficient knowledge-intensive systems. But knowledge cannot be shared...

Descripción completa

Detalles Bibliográficos
Autores: Ogosi Auqui, José Antonio, Cano Chuqui, Jorge, Guadalupe Mori, Victor Hugo, Obando Pacheco, David Hugo
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/5917
Enlace del recurso:https://hdl.handle.net/20.500.12867/5917
http://doi.org/10.37394/232018.2022.10.9
Nivel de acceso:acceso abierto
Materia:Machine learning
Risk assessment (Finances)
Artificial intelligence
https://purl.org/pe-repo/ocde/ford#2.02.03
id UTPD_b006b51ea514a0da1a1b94df363d4cc1
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/5917
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Machine learning for personal credit evaluation: A systematic review
title Machine learning for personal credit evaluation: A systematic review
spellingShingle Machine learning for personal credit evaluation: A systematic review
Ogosi Auqui, José Antonio
Machine learning
Risk assessment (Finances)
Artificial intelligence
https://purl.org/pe-repo/ocde/ford#2.02.03
title_short Machine learning for personal credit evaluation: A systematic review
title_full Machine learning for personal credit evaluation: A systematic review
title_fullStr Machine learning for personal credit evaluation: A systematic review
title_full_unstemmed Machine learning for personal credit evaluation: A systematic review
title_sort Machine learning for personal credit evaluation: A systematic review
author Ogosi Auqui, José Antonio
author_facet Ogosi Auqui, José Antonio
Cano Chuqui, Jorge
Guadalupe Mori, Victor Hugo
Obando Pacheco, David Hugo
author_role author
author2 Cano Chuqui, Jorge
Guadalupe Mori, Victor Hugo
Obando Pacheco, David Hugo
author2_role author
author
author
dc.contributor.author.fl_str_mv Ogosi Auqui, José Antonio
Cano Chuqui, Jorge
Guadalupe Mori, Victor Hugo
Obando Pacheco, David Hugo
dc.subject.es_PE.fl_str_mv Machine learning
Risk assessment (Finances)
Artificial intelligence
topic Machine learning
Risk assessment (Finances)
Artificial intelligence
https://purl.org/pe-repo/ocde/ford#2.02.03
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.03
description The importance of information in today's world as it is a key asset for business growth and innovation. The problem that arises is the lack of understanding of knowledge quality properties, which leads to the development of inefficient knowledge-intensive systems. But knowledge cannot be shared effectively without effective knowledge-intensive systems. Given this situation, the authors must analyze the benefits and believe that machine learning can benefit knowledge management and that machine learning algorithms can further improve knowledge-intensive systems. It also shows that machine learning is very helpful from a practical point of view. Machine learning not only improves knowledge-intensive systems but has powerful theoretical and practical implementations that can open up new areas of research. The objective set out is the comprehensive and systematic literature review of research published between 2018 and 2022, these studies were extracted from several critically important academic sources, with a total of 73 short articles selected. The findings also open up possible research areas for machine learning in knowledge management to generate a competitive advantage in financial institutions.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-09-05T15:07:34Z
dc.date.available.none.fl_str_mv 2022-09-05T15:07:34Z
dc.date.issued.fl_str_mv 2022
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2415-1521
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/5917
dc.identifier.journal.es_PE.fl_str_mv WSEAS Transactions on Computer Research
dc.identifier.doi.none.fl_str_mv http://doi.org/10.37394/232018.2022.10.9
identifier_str_mv 2415-1521
WSEAS Transactions on Computer Research
url https://hdl.handle.net/20.500.12867/5917
http://doi.org/10.37394/232018.2022.10.9
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartofseries.none.fl_str_mv WSEAS Transactions on Computer Research;vol. 10, pp. 62 - 73
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv World Scientific and Engineering Academy and Society
dc.publisher.country.es_PE.fl_str_mv GR
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv http://repositorio.utp.edu.pe/bitstream/20.500.12867/5917/1/J.Ogosi_WSEASTCH_Articulo_eng_2022.pdf
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5917/2/license.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5917/3/J.Ogosi_WSEASTCH_Articulo_eng_2022.pdf.txt
http://repositorio.utp.edu.pe/bitstream/20.500.12867/5917/4/J.Ogosi_WSEASTCH_Articulo_eng_2022.pdf.jpg
bitstream.checksum.fl_str_mv 47229ae11cd61ecc2d9d571ce03d910d
8a4605be74aa9ea9d79846c1fba20a33
daaf3e019d4ec5389d2d8d8281cd35ba
9c44bcb8905edd3f07e4e75796f42883
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1817984922771521536
spelling Ogosi Auqui, José AntonioCano Chuqui, JorgeGuadalupe Mori, Victor HugoObando Pacheco, David Hugo2022-09-05T15:07:34Z2022-09-05T15:07:34Z20222415-1521https://hdl.handle.net/20.500.12867/5917WSEAS Transactions on Computer Researchhttp://doi.org/10.37394/232018.2022.10.9The importance of information in today's world as it is a key asset for business growth and innovation. The problem that arises is the lack of understanding of knowledge quality properties, which leads to the development of inefficient knowledge-intensive systems. But knowledge cannot be shared effectively without effective knowledge-intensive systems. Given this situation, the authors must analyze the benefits and believe that machine learning can benefit knowledge management and that machine learning algorithms can further improve knowledge-intensive systems. It also shows that machine learning is very helpful from a practical point of view. Machine learning not only improves knowledge-intensive systems but has powerful theoretical and practical implementations that can open up new areas of research. The objective set out is the comprehensive and systematic literature review of research published between 2018 and 2022, these studies were extracted from several critically important academic sources, with a total of 73 short articles selected. The findings also open up possible research areas for machine learning in knowledge management to generate a competitive advantage in financial institutions.Campus Lima Centroapplication/pdfengWorld Scientific and Engineering Academy and SocietyGRWSEAS Transactions on Computer Research;vol. 10, pp. 62 - 73info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPMachine learningRisk assessment (Finances)Artificial intelligencehttps://purl.org/pe-repo/ocde/ford#2.02.03Machine learning for personal credit evaluation: A systematic reviewinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALJ.Ogosi_WSEASTCH_Articulo_eng_2022.pdfJ.Ogosi_WSEASTCH_Articulo_eng_2022.pdfapplication/pdf1445311http://repositorio.utp.edu.pe/bitstream/20.500.12867/5917/1/J.Ogosi_WSEASTCH_Articulo_eng_2022.pdf47229ae11cd61ecc2d9d571ce03d910dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.utp.edu.pe/bitstream/20.500.12867/5917/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTJ.Ogosi_WSEASTCH_Articulo_eng_2022.pdf.txtJ.Ogosi_WSEASTCH_Articulo_eng_2022.pdf.txtExtracted texttext/plain50791http://repositorio.utp.edu.pe/bitstream/20.500.12867/5917/3/J.Ogosi_WSEASTCH_Articulo_eng_2022.pdf.txtdaaf3e019d4ec5389d2d8d8281cd35baMD53THUMBNAILJ.Ogosi_WSEASTCH_Articulo_eng_2022.pdf.jpgJ.Ogosi_WSEASTCH_Articulo_eng_2022.pdf.jpgGenerated Thumbnailimage/jpeg20094http://repositorio.utp.edu.pe/bitstream/20.500.12867/5917/4/J.Ogosi_WSEASTCH_Articulo_eng_2022.pdf.jpg9c44bcb8905edd3f07e4e75796f42883MD5420.500.12867/5917oai:repositorio.utp.edu.pe:20.500.12867/59172022-09-05 11:02:44.959Repositorio Institucional de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.905282
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).