Methodology applied to computer audit with artificial intelligence: a systematic review

Descripción del Articulo

This systematic review focused on evaluating the impact of the machine learning operations (MLOps) methodology on anomaly detection and the integration of artificial intelligence (AI) projects in computer auditing. Data collection was carried out by searching for articles in databases, such as Scopu...

Descripción completa

Detalles Bibliográficos
Autores: Reymundez Suarez, Sheyla, Martínez Huamani, Bryan, Acuña Meléndez, María, Ovalle, Christian
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/14511
Enlace del recurso:https://hdl.handle.net/20.500.12867/14511
https://doi.org/10.11591/ijai.v13.i4.pp3727-3738
Nivel de acceso:acceso abierto
Materia:Anomalies detection
Machine learning operations
Predictive model
https://purl.org/pe-repo/ocde/ford#2.02.04
id UTPD_73d8ebff8812b4add91ec5d369c2f0fb
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/14511
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Methodology applied to computer audit with artificial intelligence: a systematic review
title Methodology applied to computer audit with artificial intelligence: a systematic review
spellingShingle Methodology applied to computer audit with artificial intelligence: a systematic review
Reymundez Suarez, Sheyla
Anomalies detection
Machine learning operations
Predictive model
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Methodology applied to computer audit with artificial intelligence: a systematic review
title_full Methodology applied to computer audit with artificial intelligence: a systematic review
title_fullStr Methodology applied to computer audit with artificial intelligence: a systematic review
title_full_unstemmed Methodology applied to computer audit with artificial intelligence: a systematic review
title_sort Methodology applied to computer audit with artificial intelligence: a systematic review
author Reymundez Suarez, Sheyla
author_facet Reymundez Suarez, Sheyla
Martínez Huamani, Bryan
Acuña Meléndez, María
Ovalle, Christian
author_role author
author2 Martínez Huamani, Bryan
Acuña Meléndez, María
Ovalle, Christian
author2_role author
author
author
dc.contributor.author.fl_str_mv Reymundez Suarez, Sheyla
Martínez Huamani, Bryan
Acuña Meléndez, María
Ovalle, Christian
dc.subject.es_PE.fl_str_mv Anomalies detection
Machine learning operations
Predictive model
topic Anomalies detection
Machine learning operations
Predictive model
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description This systematic review focused on evaluating the impact of the machine learning operations (MLOps) methodology on anomaly detection and the integration of artificial intelligence (AI) projects in computer auditing. Data collection was carried out by searching for articles in databases, such as Scopus and PubMed, covering the period from 2018 to 2024. The rigorous application of the preferred reporting items for systematic reviews and meta analyses (PRISMA) methodology allowed 88 significant records to be selected from an initial set of 1,389, highlighting the completeness of the selection phase. Both quantitative and qualitative analysis of the data obtained revealed emerging trends in the research and provided key insights into the implementation of MLOps in AI projects, especially in response to increasing complexity, whereby the adoption of the MLOps methodology stands out as a crucial component to optimize anomaly detection and improve integration in the context of information technology auditing. This systematic approach not only consolidates current knowledge but also stands as an essential guide for researchers and practitioners, and the information derived from this systematic review provides valuable guidance for future practices and decisions at the intersection of AI and information technology auditing.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2025-11-08T15:10:00Z
dc.date.available.none.fl_str_mv 2025-11-08T15:10:00Z
dc.date.issued.fl_str_mv 2024
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2252-8938
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/14511
dc.identifier.journal.es_PE.fl_str_mv IAES International Journal of Artificial Intelligence
dc.identifier.doi.none.fl_str_mv https://doi.org/10.11591/ijai.v13.i4.pp3727-3738
identifier_str_mv 2252-8938
IAES International Journal of Artificial Intelligence
url https://hdl.handle.net/20.500.12867/14511
https://doi.org/10.11591/ijai.v13.i4.pp3727-3738
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-sa/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Institute of Advanced Engineering and Science
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv https://repositorio.utp.edu.pe/backend/api/core/bitstreams/877bd58a-5da3-411d-9337-29e918acc3f2/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/2eb5069d-2625-4baf-becb-a2a35a816c0c/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/076b8122-288c-448c-8432-26a1159ff78e/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/6849b32d-9717-4885-9756-f9c2b01e4231/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/ccd4caf5-6968-4c59-98a6-ca518a3ef2b2/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0cf24ba9-bf63-458e-b1e1-2b961f894159/download
bitstream.checksum.fl_str_mv fead0273cf71c3c375f44a4502cc11e6
8a4605be74aa9ea9d79846c1fba20a33
25b17bedad95475332feadc3dad387bc
20983452da954662869910e38202418d
d1bad593cb702901049fc1010bb55eec
f41db9262419b2e097574e5fb73b4295
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1852865336153473024
spelling Reymundez Suarez, SheylaMartínez Huamani, BryanAcuña Meléndez, MaríaOvalle, Christian2025-11-08T15:10:00Z2025-11-08T15:10:00Z20242252-8938https://hdl.handle.net/20.500.12867/14511IAES International Journal of Artificial Intelligencehttps://doi.org/10.11591/ijai.v13.i4.pp3727-3738This systematic review focused on evaluating the impact of the machine learning operations (MLOps) methodology on anomaly detection and the integration of artificial intelligence (AI) projects in computer auditing. Data collection was carried out by searching for articles in databases, such as Scopus and PubMed, covering the period from 2018 to 2024. The rigorous application of the preferred reporting items for systematic reviews and meta analyses (PRISMA) methodology allowed 88 significant records to be selected from an initial set of 1,389, highlighting the completeness of the selection phase. Both quantitative and qualitative analysis of the data obtained revealed emerging trends in the research and provided key insights into the implementation of MLOps in AI projects, especially in response to increasing complexity, whereby the adoption of the MLOps methodology stands out as a crucial component to optimize anomaly detection and improve integration in the context of information technology auditing. This systematic approach not only consolidates current knowledge but also stands as an essential guide for researchers and practitioners, and the information derived from this systematic review provides valuable guidance for future practices and decisions at the intersection of AI and information technology auditing.Campus Lima Centroapplication/pdfengInstitute of Advanced Engineering and Scienceinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPAnomalies detectionMachine learning operationsPredictive modelhttps://purl.org/pe-repo/ocde/ford#2.02.04Methodology applied to computer audit with artificial intelligence: a systematic reviewinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALS.Reymundez_B.Martínez_M.Acuña_C.Ovalle_Articulo_2024.pdfS.Reymundez_B.Martínez_M.Acuña_C.Ovalle_Articulo_2024.pdfapplication/pdf424352https://repositorio.utp.edu.pe/backend/api/core/bitstreams/877bd58a-5da3-411d-9337-29e918acc3f2/downloadfead0273cf71c3c375f44a4502cc11e6MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/2eb5069d-2625-4baf-becb-a2a35a816c0c/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTReymundez.S_Martínez.B_Acuña.M_Ovalle.C_Articulo_2024.pdf.txtReymundez.S_Martínez.B_Acuña.M_Ovalle.C_Articulo_2024.pdf.txtExtracted texttext/plain70090https://repositorio.utp.edu.pe/backend/api/core/bitstreams/076b8122-288c-448c-8432-26a1159ff78e/download25b17bedad95475332feadc3dad387bcMD53S.Reymundez_B.Martínez_M.Acuña_C.Ovalle_Articulo_2024.pdf.txtS.Reymundez_B.Martínez_M.Acuña_C.Ovalle_Articulo_2024.pdf.txtExtracted texttext/plain72132https://repositorio.utp.edu.pe/backend/api/core/bitstreams/6849b32d-9717-4885-9756-f9c2b01e4231/download20983452da954662869910e38202418dMD57THUMBNAILReymundez.S_Martínez.B_Acuña.M_Ovalle.C_Articulo_2024.pdf.jpgReymundez.S_Martínez.B_Acuña.M_Ovalle.C_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg20986https://repositorio.utp.edu.pe/backend/api/core/bitstreams/ccd4caf5-6968-4c59-98a6-ca518a3ef2b2/downloadd1bad593cb702901049fc1010bb55eecMD54S.Reymundez_B.Martínez_M.Acuña_C.Ovalle_Articulo_2024.pdf.jpgS.Reymundez_B.Martínez_M.Acuña_C.Ovalle_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg39287https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0cf24ba9-bf63-458e-b1e1-2b961f894159/downloadf41db9262419b2e097574e5fb73b4295MD5820.500.12867/14511oai:repositorio.utp.edu.pe:20.500.12867/145112025-11-30 16:18:21.278https://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.941906
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).