Methodology applied to computer audit with artificial intelligence: a systematic review
Descripción del Articulo
This systematic review focused on evaluating the impact of the machine learning operations (MLOps) methodology on anomaly detection and the integration of artificial intelligence (AI) projects in computer auditing. Data collection was carried out by searching for articles in databases, such as Scopu...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad Tecnológica del Perú |
| Repositorio: | UTP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/14511 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12867/14511 https://doi.org/10.11591/ijai.v13.i4.pp3727-3738 |
| Nivel de acceso: | acceso abierto |
| Materia: | Anomalies detection Machine learning operations Predictive model https://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
UTPD_73d8ebff8812b4add91ec5d369c2f0fb |
|---|---|
| oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/14511 |
| network_acronym_str |
UTPD |
| network_name_str |
UTP-Institucional |
| repository_id_str |
4782 |
| dc.title.es_PE.fl_str_mv |
Methodology applied to computer audit with artificial intelligence: a systematic review |
| title |
Methodology applied to computer audit with artificial intelligence: a systematic review |
| spellingShingle |
Methodology applied to computer audit with artificial intelligence: a systematic review Reymundez Suarez, Sheyla Anomalies detection Machine learning operations Predictive model https://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
Methodology applied to computer audit with artificial intelligence: a systematic review |
| title_full |
Methodology applied to computer audit with artificial intelligence: a systematic review |
| title_fullStr |
Methodology applied to computer audit with artificial intelligence: a systematic review |
| title_full_unstemmed |
Methodology applied to computer audit with artificial intelligence: a systematic review |
| title_sort |
Methodology applied to computer audit with artificial intelligence: a systematic review |
| author |
Reymundez Suarez, Sheyla |
| author_facet |
Reymundez Suarez, Sheyla Martínez Huamani, Bryan Acuña Meléndez, María Ovalle, Christian |
| author_role |
author |
| author2 |
Martínez Huamani, Bryan Acuña Meléndez, María Ovalle, Christian |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Reymundez Suarez, Sheyla Martínez Huamani, Bryan Acuña Meléndez, María Ovalle, Christian |
| dc.subject.es_PE.fl_str_mv |
Anomalies detection Machine learning operations Predictive model |
| topic |
Anomalies detection Machine learning operations Predictive model https://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
This systematic review focused on evaluating the impact of the machine learning operations (MLOps) methodology on anomaly detection and the integration of artificial intelligence (AI) projects in computer auditing. Data collection was carried out by searching for articles in databases, such as Scopus and PubMed, covering the period from 2018 to 2024. The rigorous application of the preferred reporting items for systematic reviews and meta analyses (PRISMA) methodology allowed 88 significant records to be selected from an initial set of 1,389, highlighting the completeness of the selection phase. Both quantitative and qualitative analysis of the data obtained revealed emerging trends in the research and provided key insights into the implementation of MLOps in AI projects, especially in response to increasing complexity, whereby the adoption of the MLOps methodology stands out as a crucial component to optimize anomaly detection and improve integration in the context of information technology auditing. This systematic approach not only consolidates current knowledge but also stands as an essential guide for researchers and practitioners, and the information derived from this systematic review provides valuable guidance for future practices and decisions at the intersection of AI and information technology auditing. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2025-11-08T15:10:00Z |
| dc.date.available.none.fl_str_mv |
2025-11-08T15:10:00Z |
| dc.date.issued.fl_str_mv |
2024 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
2252-8938 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/14511 |
| dc.identifier.journal.es_PE.fl_str_mv |
IAES International Journal of Artificial Intelligence |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.11591/ijai.v13.i4.pp3727-3738 |
| identifier_str_mv |
2252-8938 IAES International Journal of Artificial Intelligence |
| url |
https://hdl.handle.net/20.500.12867/14511 https://doi.org/10.11591/ijai.v13.i4.pp3727-3738 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-sa/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Institute of Advanced Engineering and Science |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
| dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
| instname_str |
Universidad Tecnológica del Perú |
| instacron_str |
UTP |
| institution |
UTP |
| reponame_str |
UTP-Institucional |
| collection |
UTP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/877bd58a-5da3-411d-9337-29e918acc3f2/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/2eb5069d-2625-4baf-becb-a2a35a816c0c/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/076b8122-288c-448c-8432-26a1159ff78e/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/6849b32d-9717-4885-9756-f9c2b01e4231/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/ccd4caf5-6968-4c59-98a6-ca518a3ef2b2/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0cf24ba9-bf63-458e-b1e1-2b961f894159/download |
| bitstream.checksum.fl_str_mv |
fead0273cf71c3c375f44a4502cc11e6 8a4605be74aa9ea9d79846c1fba20a33 25b17bedad95475332feadc3dad387bc 20983452da954662869910e38202418d d1bad593cb702901049fc1010bb55eec f41db9262419b2e097574e5fb73b4295 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de la Universidad Tecnológica del Perú |
| repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
| _version_ |
1852865336153473024 |
| spelling |
Reymundez Suarez, SheylaMartínez Huamani, BryanAcuña Meléndez, MaríaOvalle, Christian2025-11-08T15:10:00Z2025-11-08T15:10:00Z20242252-8938https://hdl.handle.net/20.500.12867/14511IAES International Journal of Artificial Intelligencehttps://doi.org/10.11591/ijai.v13.i4.pp3727-3738This systematic review focused on evaluating the impact of the machine learning operations (MLOps) methodology on anomaly detection and the integration of artificial intelligence (AI) projects in computer auditing. Data collection was carried out by searching for articles in databases, such as Scopus and PubMed, covering the period from 2018 to 2024. The rigorous application of the preferred reporting items for systematic reviews and meta analyses (PRISMA) methodology allowed 88 significant records to be selected from an initial set of 1,389, highlighting the completeness of the selection phase. Both quantitative and qualitative analysis of the data obtained revealed emerging trends in the research and provided key insights into the implementation of MLOps in AI projects, especially in response to increasing complexity, whereby the adoption of the MLOps methodology stands out as a crucial component to optimize anomaly detection and improve integration in the context of information technology auditing. This systematic approach not only consolidates current knowledge but also stands as an essential guide for researchers and practitioners, and the information derived from this systematic review provides valuable guidance for future practices and decisions at the intersection of AI and information technology auditing.Campus Lima Centroapplication/pdfengInstitute of Advanced Engineering and Scienceinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPAnomalies detectionMachine learning operationsPredictive modelhttps://purl.org/pe-repo/ocde/ford#2.02.04Methodology applied to computer audit with artificial intelligence: a systematic reviewinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionORIGINALS.Reymundez_B.Martínez_M.Acuña_C.Ovalle_Articulo_2024.pdfS.Reymundez_B.Martínez_M.Acuña_C.Ovalle_Articulo_2024.pdfapplication/pdf424352https://repositorio.utp.edu.pe/backend/api/core/bitstreams/877bd58a-5da3-411d-9337-29e918acc3f2/downloadfead0273cf71c3c375f44a4502cc11e6MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/2eb5069d-2625-4baf-becb-a2a35a816c0c/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTReymundez.S_Martínez.B_Acuña.M_Ovalle.C_Articulo_2024.pdf.txtReymundez.S_Martínez.B_Acuña.M_Ovalle.C_Articulo_2024.pdf.txtExtracted texttext/plain70090https://repositorio.utp.edu.pe/backend/api/core/bitstreams/076b8122-288c-448c-8432-26a1159ff78e/download25b17bedad95475332feadc3dad387bcMD53S.Reymundez_B.Martínez_M.Acuña_C.Ovalle_Articulo_2024.pdf.txtS.Reymundez_B.Martínez_M.Acuña_C.Ovalle_Articulo_2024.pdf.txtExtracted texttext/plain72132https://repositorio.utp.edu.pe/backend/api/core/bitstreams/6849b32d-9717-4885-9756-f9c2b01e4231/download20983452da954662869910e38202418dMD57THUMBNAILReymundez.S_Martínez.B_Acuña.M_Ovalle.C_Articulo_2024.pdf.jpgReymundez.S_Martínez.B_Acuña.M_Ovalle.C_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg20986https://repositorio.utp.edu.pe/backend/api/core/bitstreams/ccd4caf5-6968-4c59-98a6-ca518a3ef2b2/downloadd1bad593cb702901049fc1010bb55eecMD54S.Reymundez_B.Martínez_M.Acuña_C.Ovalle_Articulo_2024.pdf.jpgS.Reymundez_B.Martínez_M.Acuña_C.Ovalle_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg39287https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0cf24ba9-bf63-458e-b1e1-2b961f894159/downloadf41db9262419b2e097574e5fb73b4295MD5820.500.12867/14511oai:repositorio.utp.edu.pe:20.500.12867/145112025-11-30 16:18:21.278https://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.941906 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).