Advancements and applications of machine learning in detecting radon nuclear tracks from 2001 to 2023: a bibliometric analysis.
Descripción del Articulo
We present a bibliometric analysis of the advancements in machine learning for detecting radon nuclear tracks, using publications from 2001 to 2023 sourced from Scopus and Web of Science databases. We analyze the growth in research output, particularly highlighting contributions from China and the U...
| Autores: | , , , , |
|---|---|
| Formato: | objeto de conferencia |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad Tecnológica del Perú |
| Repositorio: | UTP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/14150 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12867/14150 https://doi.org/10.18687/LACCEI2024.1.1.1018 |
| Nivel de acceso: | acceso abierto |
| Materia: | Machine Learning Nuclear Tracks Bibliometric https://purl.org/pe-repo/ocde/ford#2.01.01 |
| id |
UTPD_383ad1ae57fa1d0bf49f6ad60ddab8f4 |
|---|---|
| oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/14150 |
| network_acronym_str |
UTPD |
| network_name_str |
UTP-Institucional |
| repository_id_str |
4782 |
| dc.title.es_PE.fl_str_mv |
Advancements and applications of machine learning in detecting radon nuclear tracks from 2001 to 2023: a bibliometric analysis. |
| title |
Advancements and applications of machine learning in detecting radon nuclear tracks from 2001 to 2023: a bibliometric analysis. |
| spellingShingle |
Advancements and applications of machine learning in detecting radon nuclear tracks from 2001 to 2023: a bibliometric analysis. Liza, Rafael Machine Learning Nuclear Tracks Bibliometric https://purl.org/pe-repo/ocde/ford#2.01.01 |
| title_short |
Advancements and applications of machine learning in detecting radon nuclear tracks from 2001 to 2023: a bibliometric analysis. |
| title_full |
Advancements and applications of machine learning in detecting radon nuclear tracks from 2001 to 2023: a bibliometric analysis. |
| title_fullStr |
Advancements and applications of machine learning in detecting radon nuclear tracks from 2001 to 2023: a bibliometric analysis. |
| title_full_unstemmed |
Advancements and applications of machine learning in detecting radon nuclear tracks from 2001 to 2023: a bibliometric analysis. |
| title_sort |
Advancements and applications of machine learning in detecting radon nuclear tracks from 2001 to 2023: a bibliometric analysis. |
| author |
Liza, Rafael |
| author_facet |
Liza, Rafael Sánchez, Luis Díaz, Félix Toribio, Jessica Cerna, Nhell |
| author_role |
author |
| author2 |
Sánchez, Luis Díaz, Félix Toribio, Jessica Cerna, Nhell |
| author2_role |
author author author author |
| dc.contributor.author.fl_str_mv |
Liza, Rafael Sánchez, Luis Díaz, Félix Toribio, Jessica Cerna, Nhell |
| dc.subject.es_PE.fl_str_mv |
Machine Learning Nuclear Tracks Bibliometric |
| topic |
Machine Learning Nuclear Tracks Bibliometric https://purl.org/pe-repo/ocde/ford#2.01.01 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.01.01 |
| description |
We present a bibliometric analysis of the advancements in machine learning for detecting radon nuclear tracks, using publications from 2001 to 2023 sourced from Scopus and Web of Science databases. We analyze the growth in research output, particularly highlighting contributions from China and the United States, and identify key themes such as "machine learning", "radon", "neural networks", and emerging methods like "xgboost" and "long short-term memory networks". Our findings underscore the collaborative efforts within the field, as evidenced by the global authorship networks. The research landscape is mapped out, revealing core and peripheral areas of study that define the current state and prospects of radon detection research. The present study encapsulates the evolution of the field and emphasizes the necessity for continued interdisciplinary collaboration to enhance radon risk assessment methods. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2025-10-29T20:13:45Z |
| dc.date.available.none.fl_str_mv |
2025-10-29T20:13:45Z |
| dc.date.issued.fl_str_mv |
2024 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/14150 |
| dc.identifier.journal.es_PE.fl_str_mv |
Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.18687/LACCEI2024.1.1.1018 |
| url |
https://hdl.handle.net/20.500.12867/14150 https://doi.org/10.18687/LACCEI2024.1.1.1018 |
| identifier_str_mv |
Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Latin American and Caribbean Consortium of Engineering Institutions |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
| dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
| instname_str |
Universidad Tecnológica del Perú |
| instacron_str |
UTP |
| institution |
UTP |
| reponame_str |
UTP-Institucional |
| collection |
UTP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0583a2e9-f079-4495-b30d-431b7fc28d80/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/1390e01d-f24c-40a2-af17-a58b5fc28cc0/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/b757f084-efe6-465b-94d0-e3efe8981b6b/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/9e5a8fd9-9865-4aba-803d-4a7f85de55e9/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/ed8dc4f7-ba13-49ac-a518-90c55d40c39b/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0b20c71f-1927-41eb-9c7a-b0e1efbcd83b/download |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 8b4b8a5d71a3071f4754572bec291bf6 361858f63970b174eac6b236e7040ee6 b1197af1710613559862bbe7ca0d5c52 b4c60a582cf0dd14cdaaa7647fc2bfd9 e3584f208c8e5e548e93767701334df6 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de la Universidad Tecnológica del Perú |
| repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
| _version_ |
1852231959286120448 |
| spelling |
Liza, RafaelSánchez, LuisDíaz, FélixToribio, JessicaCerna, Nhell2025-10-29T20:13:45Z2025-10-29T20:13:45Z2024https://hdl.handle.net/20.500.12867/14150Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technologyhttps://doi.org/10.18687/LACCEI2024.1.1.1018We present a bibliometric analysis of the advancements in machine learning for detecting radon nuclear tracks, using publications from 2001 to 2023 sourced from Scopus and Web of Science databases. We analyze the growth in research output, particularly highlighting contributions from China and the United States, and identify key themes such as "machine learning", "radon", "neural networks", and emerging methods like "xgboost" and "long short-term memory networks". Our findings underscore the collaborative efforts within the field, as evidenced by the global authorship networks. The research landscape is mapped out, revealing core and peripheral areas of study that define the current state and prospects of radon detection research. The present study encapsulates the evolution of the field and emphasizes the necessity for continued interdisciplinary collaboration to enhance radon risk assessment methods.Campus Lima Centroapplication/pdfengLatin American and Caribbean Consortium of Engineering Institutionsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPMachine LearningNuclear TracksBibliometrichttps://purl.org/pe-repo/ocde/ford#2.01.01Advancements and applications of machine learning in detecting radon nuclear tracks from 2001 to 2023: a bibliometric analysis.info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0583a2e9-f079-4495-b30d-431b7fc28d80/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTLiza.R_Sanchez.L_Diaz.F_Toribio.J_Cerna.N_Conference_Paper_2024.pdf.txtLiza.R_Sanchez.L_Diaz.F_Toribio.J_Cerna.N_Conference_Paper_2024.pdf.txtExtracted texttext/plain46926https://repositorio.utp.edu.pe/backend/api/core/bitstreams/1390e01d-f24c-40a2-af17-a58b5fc28cc0/download8b4b8a5d71a3071f4754572bec291bf6MD53R.Liza_L.Sanchez_F.Diaz_J.Toribio_N.Cerna_Conference_Paper_2024.pdf.txtR.Liza_L.Sanchez_F.Diaz_J.Toribio_N.Cerna_Conference_Paper_2024.pdf.txtExtracted texttext/plain48403https://repositorio.utp.edu.pe/backend/api/core/bitstreams/b757f084-efe6-465b-94d0-e3efe8981b6b/download361858f63970b174eac6b236e7040ee6MD58THUMBNAILLiza.R_Sanchez.L_Diaz.F_Toribio.J_Cerna.N_Conference_Paper_2024.pdf.jpgLiza.R_Sanchez.L_Diaz.F_Toribio.J_Cerna.N_Conference_Paper_2024.pdf.jpgGenerated Thumbnailimage/jpeg25913https://repositorio.utp.edu.pe/backend/api/core/bitstreams/9e5a8fd9-9865-4aba-803d-4a7f85de55e9/downloadb1197af1710613559862bbe7ca0d5c52MD54R.Liza_L.Sanchez_F.Diaz_J.Toribio_N.Cerna_Conference_Paper_2024.pdf.jpgR.Liza_L.Sanchez_F.Diaz_J.Toribio_N.Cerna_Conference_Paper_2024.pdf.jpgGenerated Thumbnailimage/jpeg58605https://repositorio.utp.edu.pe/backend/api/core/bitstreams/ed8dc4f7-ba13-49ac-a518-90c55d40c39b/downloadb4c60a582cf0dd14cdaaa7647fc2bfd9MD59ORIGINALR.Liza_L.Sanchez_F.Diaz_J.Toribio_N.Cerna_Conference_Paper_2024.pdfR.Liza_L.Sanchez_F.Diaz_J.Toribio_N.Cerna_Conference_Paper_2024.pdfapplication/pdf776408https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0b20c71f-1927-41eb-9c7a-b0e1efbcd83b/downloade3584f208c8e5e548e93767701334df6MD5520.500.12867/14150oai:repositorio.utp.edu.pe:20.500.12867/141502025-11-30 18:22:17.411https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.902549 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).