Advancements and applications of machine learning in detecting radon nuclear tracks from 2001 to 2023: a bibliometric analysis.

Descripción del Articulo

We present a bibliometric analysis of the advancements in machine learning for detecting radon nuclear tracks, using publications from 2001 to 2023 sourced from Scopus and Web of Science databases. We analyze the growth in research output, particularly highlighting contributions from China and the U...

Descripción completa

Detalles Bibliográficos
Autores: Liza, Rafael, Sánchez, Luis, Díaz, Félix, Toribio, Jessica, Cerna, Nhell
Formato: objeto de conferencia
Fecha de Publicación:2024
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/14150
Enlace del recurso:https://hdl.handle.net/20.500.12867/14150
https://doi.org/10.18687/LACCEI2024.1.1.1018
Nivel de acceso:acceso abierto
Materia:Machine Learning
Nuclear Tracks
Bibliometric
https://purl.org/pe-repo/ocde/ford#2.01.01
id UTPD_383ad1ae57fa1d0bf49f6ad60ddab8f4
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/14150
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Advancements and applications of machine learning in detecting radon nuclear tracks from 2001 to 2023: a bibliometric analysis.
title Advancements and applications of machine learning in detecting radon nuclear tracks from 2001 to 2023: a bibliometric analysis.
spellingShingle Advancements and applications of machine learning in detecting radon nuclear tracks from 2001 to 2023: a bibliometric analysis.
Liza, Rafael
Machine Learning
Nuclear Tracks
Bibliometric
https://purl.org/pe-repo/ocde/ford#2.01.01
title_short Advancements and applications of machine learning in detecting radon nuclear tracks from 2001 to 2023: a bibliometric analysis.
title_full Advancements and applications of machine learning in detecting radon nuclear tracks from 2001 to 2023: a bibliometric analysis.
title_fullStr Advancements and applications of machine learning in detecting radon nuclear tracks from 2001 to 2023: a bibliometric analysis.
title_full_unstemmed Advancements and applications of machine learning in detecting radon nuclear tracks from 2001 to 2023: a bibliometric analysis.
title_sort Advancements and applications of machine learning in detecting radon nuclear tracks from 2001 to 2023: a bibliometric analysis.
author Liza, Rafael
author_facet Liza, Rafael
Sánchez, Luis
Díaz, Félix
Toribio, Jessica
Cerna, Nhell
author_role author
author2 Sánchez, Luis
Díaz, Félix
Toribio, Jessica
Cerna, Nhell
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Liza, Rafael
Sánchez, Luis
Díaz, Félix
Toribio, Jessica
Cerna, Nhell
dc.subject.es_PE.fl_str_mv Machine Learning
Nuclear Tracks
Bibliometric
topic Machine Learning
Nuclear Tracks
Bibliometric
https://purl.org/pe-repo/ocde/ford#2.01.01
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.01.01
description We present a bibliometric analysis of the advancements in machine learning for detecting radon nuclear tracks, using publications from 2001 to 2023 sourced from Scopus and Web of Science databases. We analyze the growth in research output, particularly highlighting contributions from China and the United States, and identify key themes such as "machine learning", "radon", "neural networks", and emerging methods like "xgboost" and "long short-term memory networks". Our findings underscore the collaborative efforts within the field, as evidenced by the global authorship networks. The research landscape is mapped out, revealing core and peripheral areas of study that define the current state and prospects of radon detection research. The present study encapsulates the evolution of the field and emphasizes the necessity for continued interdisciplinary collaboration to enhance radon risk assessment methods.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2025-10-29T20:13:45Z
dc.date.available.none.fl_str_mv 2025-10-29T20:13:45Z
dc.date.issued.fl_str_mv 2024
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format conferenceObject
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/14150
dc.identifier.journal.es_PE.fl_str_mv Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology
dc.identifier.doi.none.fl_str_mv https://doi.org/10.18687/LACCEI2024.1.1.1018
url https://hdl.handle.net/20.500.12867/14150
https://doi.org/10.18687/LACCEI2024.1.1.1018
identifier_str_mv Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Latin American and Caribbean Consortium of Engineering Institutions
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0583a2e9-f079-4495-b30d-431b7fc28d80/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/1390e01d-f24c-40a2-af17-a58b5fc28cc0/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/b757f084-efe6-465b-94d0-e3efe8981b6b/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/9e5a8fd9-9865-4aba-803d-4a7f85de55e9/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/ed8dc4f7-ba13-49ac-a518-90c55d40c39b/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0b20c71f-1927-41eb-9c7a-b0e1efbcd83b/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
8b4b8a5d71a3071f4754572bec291bf6
361858f63970b174eac6b236e7040ee6
b1197af1710613559862bbe7ca0d5c52
b4c60a582cf0dd14cdaaa7647fc2bfd9
e3584f208c8e5e548e93767701334df6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1852231959286120448
spelling Liza, RafaelSánchez, LuisDíaz, FélixToribio, JessicaCerna, Nhell2025-10-29T20:13:45Z2025-10-29T20:13:45Z2024https://hdl.handle.net/20.500.12867/14150Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technologyhttps://doi.org/10.18687/LACCEI2024.1.1.1018We present a bibliometric analysis of the advancements in machine learning for detecting radon nuclear tracks, using publications from 2001 to 2023 sourced from Scopus and Web of Science databases. We analyze the growth in research output, particularly highlighting contributions from China and the United States, and identify key themes such as "machine learning", "radon", "neural networks", and emerging methods like "xgboost" and "long short-term memory networks". Our findings underscore the collaborative efforts within the field, as evidenced by the global authorship networks. The research landscape is mapped out, revealing core and peripheral areas of study that define the current state and prospects of radon detection research. The present study encapsulates the evolution of the field and emphasizes the necessity for continued interdisciplinary collaboration to enhance radon risk assessment methods.Campus Lima Centroapplication/pdfengLatin American and Caribbean Consortium of Engineering Institutionsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPMachine LearningNuclear TracksBibliometrichttps://purl.org/pe-repo/ocde/ford#2.01.01Advancements and applications of machine learning in detecting radon nuclear tracks from 2001 to 2023: a bibliometric analysis.info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0583a2e9-f079-4495-b30d-431b7fc28d80/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTLiza.R_Sanchez.L_Diaz.F_Toribio.J_Cerna.N_Conference_Paper_2024.pdf.txtLiza.R_Sanchez.L_Diaz.F_Toribio.J_Cerna.N_Conference_Paper_2024.pdf.txtExtracted texttext/plain46926https://repositorio.utp.edu.pe/backend/api/core/bitstreams/1390e01d-f24c-40a2-af17-a58b5fc28cc0/download8b4b8a5d71a3071f4754572bec291bf6MD53R.Liza_L.Sanchez_F.Diaz_J.Toribio_N.Cerna_Conference_Paper_2024.pdf.txtR.Liza_L.Sanchez_F.Diaz_J.Toribio_N.Cerna_Conference_Paper_2024.pdf.txtExtracted texttext/plain48403https://repositorio.utp.edu.pe/backend/api/core/bitstreams/b757f084-efe6-465b-94d0-e3efe8981b6b/download361858f63970b174eac6b236e7040ee6MD58THUMBNAILLiza.R_Sanchez.L_Diaz.F_Toribio.J_Cerna.N_Conference_Paper_2024.pdf.jpgLiza.R_Sanchez.L_Diaz.F_Toribio.J_Cerna.N_Conference_Paper_2024.pdf.jpgGenerated Thumbnailimage/jpeg25913https://repositorio.utp.edu.pe/backend/api/core/bitstreams/9e5a8fd9-9865-4aba-803d-4a7f85de55e9/downloadb1197af1710613559862bbe7ca0d5c52MD54R.Liza_L.Sanchez_F.Diaz_J.Toribio_N.Cerna_Conference_Paper_2024.pdf.jpgR.Liza_L.Sanchez_F.Diaz_J.Toribio_N.Cerna_Conference_Paper_2024.pdf.jpgGenerated Thumbnailimage/jpeg58605https://repositorio.utp.edu.pe/backend/api/core/bitstreams/ed8dc4f7-ba13-49ac-a518-90c55d40c39b/downloadb4c60a582cf0dd14cdaaa7647fc2bfd9MD59ORIGINALR.Liza_L.Sanchez_F.Diaz_J.Toribio_N.Cerna_Conference_Paper_2024.pdfR.Liza_L.Sanchez_F.Diaz_J.Toribio_N.Cerna_Conference_Paper_2024.pdfapplication/pdf776408https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0b20c71f-1927-41eb-9c7a-b0e1efbcd83b/downloade3584f208c8e5e548e93767701334df6MD5520.500.12867/14150oai:repositorio.utp.edu.pe:20.500.12867/141502025-11-30 18:22:17.411https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.902549
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).