Machine learning models for money laundering detection in financial institutions. A systematic literature review

Descripción del Articulo

Financial crimes in institutions have grown exponentially over the years, detecting credit card fraud in which simple and hybrid machine learning have been used for detection. In the world of financial transactions, the development of predictive models in the detection of financial fraud has become...

Descripción completa

Detalles Bibliográficos
Autores: Soria, Juan J., Loayza Abal, Rodrigo, Segura Peña, Lidia
Formato: objeto de conferencia
Fecha de Publicación:2024
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/14365
Enlace del recurso:https://hdl.handle.net/20.500.12867/14365
https://doi.org/10.18687/LACCEI2024.1.1.1682
Nivel de acceso:acceso abierto
Materia:Support Machine
Active Washing
Neural Networks
https://purl.org/pe-repo/ocde/ford#2.02.04
id UTPD_31385bed803be2a78dbef914225321c4
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/14365
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Machine learning models for money laundering detection in financial institutions. A systematic literature review
title Machine learning models for money laundering detection in financial institutions. A systematic literature review
spellingShingle Machine learning models for money laundering detection in financial institutions. A systematic literature review
Soria, Juan J.
Support Machine
Active Washing
Neural Networks
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Machine learning models for money laundering detection in financial institutions. A systematic literature review
title_full Machine learning models for money laundering detection in financial institutions. A systematic literature review
title_fullStr Machine learning models for money laundering detection in financial institutions. A systematic literature review
title_full_unstemmed Machine learning models for money laundering detection in financial institutions. A systematic literature review
title_sort Machine learning models for money laundering detection in financial institutions. A systematic literature review
author Soria, Juan J.
author_facet Soria, Juan J.
Loayza Abal, Rodrigo
Segura Peña, Lidia
author_role author
author2 Loayza Abal, Rodrigo
Segura Peña, Lidia
author2_role author
author
dc.contributor.author.fl_str_mv Soria, Juan J.
Loayza Abal, Rodrigo
Segura Peña, Lidia
dc.subject.es_PE.fl_str_mv Support Machine
Active Washing
Neural Networks
topic Support Machine
Active Washing
Neural Networks
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description Financial crimes in institutions have grown exponentially over the years, detecting credit card fraud in which simple and hybrid machine learning have been used for detection. In the world of financial transactions, the development of predictive models in the detection of financial fraud has become a fundamental element for the success of a secure transaction in banking organizations; in this sense, the study aimed to systematize research with machine learning models in the detection of money laundering in financial organizations, the methodological design used was theoretical systematic review, the search explored two databases following the PRISMA statement (Scopus, Web of Science), 189 articles were found, of which, after the eligibility criteria, 25 were systematized. The results refer that work was done with Support Machine Models (SVM), Nearest Neighbors (KNN), Artificial Neural Networks (ANN), decision trees, Random Forests and Naive Bayes, which shows that the best accuracy in obtaining the laundering of assets was obtained by the SVM with an accuracy of 93.45%, in second place the Neural network with 92.14%; in the same way it was observed that Gezer, Ali et al. had the highest citation with 29, followed by Eachempati, Prajwal with 22 citations. It has been further revealed that money laundering affected many organizations engaged in being transactions in virtual form, in which artificial intelligence contributes in its support to detect this computer crime. These findings provide valuable information to improve the detection of financial fraud, highlighting the importance of addressing specific aspects that with the help of artificial intelligence can promote a better machine learning model that allows detecting suspicious transactions.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2025-11-04T18:27:40Z
dc.date.available.none.fl_str_mv 2025-11-04T18:27:40Z
dc.date.issued.fl_str_mv 2024
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format conferenceObject
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2414-6390
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/14365
dc.identifier.journal.es_PE.fl_str_mv Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology
dc.identifier.doi.none.fl_str_mv https://doi.org/10.18687/LACCEI2024.1.1.1682
identifier_str_mv 2414-6390
Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology
url https://hdl.handle.net/20.500.12867/14365
https://doi.org/10.18687/LACCEI2024.1.1.1682
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Latin American and Caribbean Consortium of Engineering Institutions
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0cf65f5d-5924-4c0b-afa9-f24537f79297/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/8fe8fbe9-36f6-43d5-8bda-1fd61d373b28/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/7121cb1a-8ea4-41f9-bbd4-274e5ed40067/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/cef54497-f360-47e5-a05a-85e409c3d383/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/54a3c91c-6091-4a19-9959-85921518b0ac/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/a38fa241-e88d-418d-aef3-fb567665b32b/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
4324b653d3b7632e8c3695dfe0b80941
a6baefca3205aa9a478eb95b1dc572ee
44f395f674c383c37131c496bc21037e
2360e8f9ca39473f49a2854881a1a687
c10b15dd358b4e806b41a19876546bf9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1852231423140823040
spelling Soria, Juan J.Loayza Abal, RodrigoSegura Peña, Lidia2025-11-04T18:27:40Z2025-11-04T18:27:40Z20242414-6390https://hdl.handle.net/20.500.12867/14365Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technologyhttps://doi.org/10.18687/LACCEI2024.1.1.1682Financial crimes in institutions have grown exponentially over the years, detecting credit card fraud in which simple and hybrid machine learning have been used for detection. In the world of financial transactions, the development of predictive models in the detection of financial fraud has become a fundamental element for the success of a secure transaction in banking organizations; in this sense, the study aimed to systematize research with machine learning models in the detection of money laundering in financial organizations, the methodological design used was theoretical systematic review, the search explored two databases following the PRISMA statement (Scopus, Web of Science), 189 articles were found, of which, after the eligibility criteria, 25 were systematized. The results refer that work was done with Support Machine Models (SVM), Nearest Neighbors (KNN), Artificial Neural Networks (ANN), decision trees, Random Forests and Naive Bayes, which shows that the best accuracy in obtaining the laundering of assets was obtained by the SVM with an accuracy of 93.45%, in second place the Neural network with 92.14%; in the same way it was observed that Gezer, Ali et al. had the highest citation with 29, followed by Eachempati, Prajwal with 22 citations. It has been further revealed that money laundering affected many organizations engaged in being transactions in virtual form, in which artificial intelligence contributes in its support to detect this computer crime. These findings provide valuable information to improve the detection of financial fraud, highlighting the importance of addressing specific aspects that with the help of artificial intelligence can promote a better machine learning model that allows detecting suspicious transactions.Campus Lima Surapplication/pdfengLatin American and Caribbean Consortium of Engineering Institutionsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPSupport MachineActive WashingNeural Networkshttps://purl.org/pe-repo/ocde/ford#2.02.04Machine learning models for money laundering detection in financial institutions. A systematic literature reviewinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0cf65f5d-5924-4c0b-afa9-f24537f79297/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTSoria.J_Loayza.R_Segura.L_Conference_Paper_2024.pdf.txtSoria.J_Loayza.R_Segura.L_Conference_Paper_2024.pdf.txtExtracted texttext/plain42150https://repositorio.utp.edu.pe/backend/api/core/bitstreams/8fe8fbe9-36f6-43d5-8bda-1fd61d373b28/download4324b653d3b7632e8c3695dfe0b80941MD53J.Soria_R.Loayza_L.Segura_Conference_Paper_2024.pdf.txtJ.Soria_R.Loayza_L.Segura_Conference_Paper_2024.pdf.txtExtracted texttext/plain44228https://repositorio.utp.edu.pe/backend/api/core/bitstreams/7121cb1a-8ea4-41f9-bbd4-274e5ed40067/downloada6baefca3205aa9a478eb95b1dc572eeMD58THUMBNAILSoria.J_Loayza.R_Segura.L_Conference_Paper_2024.pdf.jpgSoria.J_Loayza.R_Segura.L_Conference_Paper_2024.pdf.jpgGenerated Thumbnailimage/jpeg15184https://repositorio.utp.edu.pe/backend/api/core/bitstreams/cef54497-f360-47e5-a05a-85e409c3d383/download44f395f674c383c37131c496bc21037eMD54J.Soria_R.Loayza_L.Segura_Conference_Paper_2024.pdf.jpgJ.Soria_R.Loayza_L.Segura_Conference_Paper_2024.pdf.jpgGenerated Thumbnailimage/jpeg32668https://repositorio.utp.edu.pe/backend/api/core/bitstreams/54a3c91c-6091-4a19-9959-85921518b0ac/download2360e8f9ca39473f49a2854881a1a687MD59ORIGINALJ.Soria_R.Loayza_L.Segura_Conference_Paper_2024.pdfJ.Soria_R.Loayza_L.Segura_Conference_Paper_2024.pdfapplication/pdf826379https://repositorio.utp.edu.pe/backend/api/core/bitstreams/a38fa241-e88d-418d-aef3-fb567665b32b/downloadc10b15dd358b4e806b41a19876546bf9MD5520.500.12867/14365oai:repositorio.utp.edu.pe:20.500.12867/143652025-11-30 16:45:44.476https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.918179
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).