Machine learning models for money laundering detection in financial institutions. A systematic literature review
Descripción del Articulo
Financial crimes in institutions have grown exponentially over the years, detecting credit card fraud in which simple and hybrid machine learning have been used for detection. In the world of financial transactions, the development of predictive models in the detection of financial fraud has become...
| Autores: | , , |
|---|---|
| Formato: | objeto de conferencia |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad Tecnológica del Perú |
| Repositorio: | UTP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/14365 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12867/14365 https://doi.org/10.18687/LACCEI2024.1.1.1682 |
| Nivel de acceso: | acceso abierto |
| Materia: | Support Machine Active Washing Neural Networks https://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
UTPD_31385bed803be2a78dbef914225321c4 |
|---|---|
| oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/14365 |
| network_acronym_str |
UTPD |
| network_name_str |
UTP-Institucional |
| repository_id_str |
4782 |
| dc.title.es_PE.fl_str_mv |
Machine learning models for money laundering detection in financial institutions. A systematic literature review |
| title |
Machine learning models for money laundering detection in financial institutions. A systematic literature review |
| spellingShingle |
Machine learning models for money laundering detection in financial institutions. A systematic literature review Soria, Juan J. Support Machine Active Washing Neural Networks https://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
Machine learning models for money laundering detection in financial institutions. A systematic literature review |
| title_full |
Machine learning models for money laundering detection in financial institutions. A systematic literature review |
| title_fullStr |
Machine learning models for money laundering detection in financial institutions. A systematic literature review |
| title_full_unstemmed |
Machine learning models for money laundering detection in financial institutions. A systematic literature review |
| title_sort |
Machine learning models for money laundering detection in financial institutions. A systematic literature review |
| author |
Soria, Juan J. |
| author_facet |
Soria, Juan J. Loayza Abal, Rodrigo Segura Peña, Lidia |
| author_role |
author |
| author2 |
Loayza Abal, Rodrigo Segura Peña, Lidia |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Soria, Juan J. Loayza Abal, Rodrigo Segura Peña, Lidia |
| dc.subject.es_PE.fl_str_mv |
Support Machine Active Washing Neural Networks |
| topic |
Support Machine Active Washing Neural Networks https://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
Financial crimes in institutions have grown exponentially over the years, detecting credit card fraud in which simple and hybrid machine learning have been used for detection. In the world of financial transactions, the development of predictive models in the detection of financial fraud has become a fundamental element for the success of a secure transaction in banking organizations; in this sense, the study aimed to systematize research with machine learning models in the detection of money laundering in financial organizations, the methodological design used was theoretical systematic review, the search explored two databases following the PRISMA statement (Scopus, Web of Science), 189 articles were found, of which, after the eligibility criteria, 25 were systematized. The results refer that work was done with Support Machine Models (SVM), Nearest Neighbors (KNN), Artificial Neural Networks (ANN), decision trees, Random Forests and Naive Bayes, which shows that the best accuracy in obtaining the laundering of assets was obtained by the SVM with an accuracy of 93.45%, in second place the Neural network with 92.14%; in the same way it was observed that Gezer, Ali et al. had the highest citation with 29, followed by Eachempati, Prajwal with 22 citations. It has been further revealed that money laundering affected many organizations engaged in being transactions in virtual form, in which artificial intelligence contributes in its support to detect this computer crime. These findings provide valuable information to improve the detection of financial fraud, highlighting the importance of addressing specific aspects that with the help of artificial intelligence can promote a better machine learning model that allows detecting suspicious transactions. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2025-11-04T18:27:40Z |
| dc.date.available.none.fl_str_mv |
2025-11-04T18:27:40Z |
| dc.date.issued.fl_str_mv |
2024 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
2414-6390 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/14365 |
| dc.identifier.journal.es_PE.fl_str_mv |
Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.18687/LACCEI2024.1.1.1682 |
| identifier_str_mv |
2414-6390 Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology |
| url |
https://hdl.handle.net/20.500.12867/14365 https://doi.org/10.18687/LACCEI2024.1.1.1682 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Latin American and Caribbean Consortium of Engineering Institutions |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
| dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
| instname_str |
Universidad Tecnológica del Perú |
| instacron_str |
UTP |
| institution |
UTP |
| reponame_str |
UTP-Institucional |
| collection |
UTP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0cf65f5d-5924-4c0b-afa9-f24537f79297/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/8fe8fbe9-36f6-43d5-8bda-1fd61d373b28/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/7121cb1a-8ea4-41f9-bbd4-274e5ed40067/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/cef54497-f360-47e5-a05a-85e409c3d383/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/54a3c91c-6091-4a19-9959-85921518b0ac/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/a38fa241-e88d-418d-aef3-fb567665b32b/download |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 4324b653d3b7632e8c3695dfe0b80941 a6baefca3205aa9a478eb95b1dc572ee 44f395f674c383c37131c496bc21037e 2360e8f9ca39473f49a2854881a1a687 c10b15dd358b4e806b41a19876546bf9 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de la Universidad Tecnológica del Perú |
| repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
| _version_ |
1852231423140823040 |
| spelling |
Soria, Juan J.Loayza Abal, RodrigoSegura Peña, Lidia2025-11-04T18:27:40Z2025-11-04T18:27:40Z20242414-6390https://hdl.handle.net/20.500.12867/14365Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technologyhttps://doi.org/10.18687/LACCEI2024.1.1.1682Financial crimes in institutions have grown exponentially over the years, detecting credit card fraud in which simple and hybrid machine learning have been used for detection. In the world of financial transactions, the development of predictive models in the detection of financial fraud has become a fundamental element for the success of a secure transaction in banking organizations; in this sense, the study aimed to systematize research with machine learning models in the detection of money laundering in financial organizations, the methodological design used was theoretical systematic review, the search explored two databases following the PRISMA statement (Scopus, Web of Science), 189 articles were found, of which, after the eligibility criteria, 25 were systematized. The results refer that work was done with Support Machine Models (SVM), Nearest Neighbors (KNN), Artificial Neural Networks (ANN), decision trees, Random Forests and Naive Bayes, which shows that the best accuracy in obtaining the laundering of assets was obtained by the SVM with an accuracy of 93.45%, in second place the Neural network with 92.14%; in the same way it was observed that Gezer, Ali et al. had the highest citation with 29, followed by Eachempati, Prajwal with 22 citations. It has been further revealed that money laundering affected many organizations engaged in being transactions in virtual form, in which artificial intelligence contributes in its support to detect this computer crime. These findings provide valuable information to improve the detection of financial fraud, highlighting the importance of addressing specific aspects that with the help of artificial intelligence can promote a better machine learning model that allows detecting suspicious transactions.Campus Lima Surapplication/pdfengLatin American and Caribbean Consortium of Engineering Institutionsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPSupport MachineActive WashingNeural Networkshttps://purl.org/pe-repo/ocde/ford#2.02.04Machine learning models for money laundering detection in financial institutions. A systematic literature reviewinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0cf65f5d-5924-4c0b-afa9-f24537f79297/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTSoria.J_Loayza.R_Segura.L_Conference_Paper_2024.pdf.txtSoria.J_Loayza.R_Segura.L_Conference_Paper_2024.pdf.txtExtracted texttext/plain42150https://repositorio.utp.edu.pe/backend/api/core/bitstreams/8fe8fbe9-36f6-43d5-8bda-1fd61d373b28/download4324b653d3b7632e8c3695dfe0b80941MD53J.Soria_R.Loayza_L.Segura_Conference_Paper_2024.pdf.txtJ.Soria_R.Loayza_L.Segura_Conference_Paper_2024.pdf.txtExtracted texttext/plain44228https://repositorio.utp.edu.pe/backend/api/core/bitstreams/7121cb1a-8ea4-41f9-bbd4-274e5ed40067/downloada6baefca3205aa9a478eb95b1dc572eeMD58THUMBNAILSoria.J_Loayza.R_Segura.L_Conference_Paper_2024.pdf.jpgSoria.J_Loayza.R_Segura.L_Conference_Paper_2024.pdf.jpgGenerated Thumbnailimage/jpeg15184https://repositorio.utp.edu.pe/backend/api/core/bitstreams/cef54497-f360-47e5-a05a-85e409c3d383/download44f395f674c383c37131c496bc21037eMD54J.Soria_R.Loayza_L.Segura_Conference_Paper_2024.pdf.jpgJ.Soria_R.Loayza_L.Segura_Conference_Paper_2024.pdf.jpgGenerated Thumbnailimage/jpeg32668https://repositorio.utp.edu.pe/backend/api/core/bitstreams/54a3c91c-6091-4a19-9959-85921518b0ac/download2360e8f9ca39473f49a2854881a1a687MD59ORIGINALJ.Soria_R.Loayza_L.Segura_Conference_Paper_2024.pdfJ.Soria_R.Loayza_L.Segura_Conference_Paper_2024.pdfapplication/pdf826379https://repositorio.utp.edu.pe/backend/api/core/bitstreams/a38fa241-e88d-418d-aef3-fb567665b32b/downloadc10b15dd358b4e806b41a19876546bf9MD5520.500.12867/14365oai:repositorio.utp.edu.pe:20.500.12867/143652025-11-30 16:45:44.476https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.918179 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).