Employee attrition prediction using machine learning models

Descripción del Articulo

Today's business landscape is characterized by competition and dynamism, which has transformed human resource management into an essential strategic partner for organizations. Employee turnover poses risks that affect productivity and knowledge management. This study focuses on predicting emplo...

Descripción completa

Detalles Bibliográficos
Autores: Iparraguirre-Villanueva, Orlando, Chauca-Huete, Luis, Paulino-Moreno, Cleoge
Formato: objeto de conferencia
Fecha de Publicación:2024
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/14263
Enlace del recurso:https://hdl.handle.net/20.500.12867/14263
https://doi.org/10.18687/LACCEI2024.1.1.498
Nivel de acceso:acceso abierto
Materia:Machine learning
Artificial intelligence
Management
Human Resources
https://purl.org/pe-repo/ocde/ford#2.02.04
id UTPD_208d91ac2f4319c883d0717902394e21
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/14263
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Employee attrition prediction using machine learning models
title Employee attrition prediction using machine learning models
spellingShingle Employee attrition prediction using machine learning models
Iparraguirre-Villanueva, Orlando
Machine learning
Artificial intelligence
Management
Human Resources
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Employee attrition prediction using machine learning models
title_full Employee attrition prediction using machine learning models
title_fullStr Employee attrition prediction using machine learning models
title_full_unstemmed Employee attrition prediction using machine learning models
title_sort Employee attrition prediction using machine learning models
author Iparraguirre-Villanueva, Orlando
author_facet Iparraguirre-Villanueva, Orlando
Chauca-Huete, Luis
Paulino-Moreno, Cleoge
author_role author
author2 Chauca-Huete, Luis
Paulino-Moreno, Cleoge
author2_role author
author
dc.contributor.author.fl_str_mv Iparraguirre-Villanueva, Orlando
Chauca-Huete, Luis
Paulino-Moreno, Cleoge
dc.subject.es_PE.fl_str_mv Machine learning
Artificial intelligence
Management
Human Resources
topic Machine learning
Artificial intelligence
Management
Human Resources
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description Today's business landscape is characterized by competition and dynamism, which has transformed human resource management into an essential strategic partner for organizations. Employee turnover poses risks that affect productivity and knowledge management. This study focuses on predicting employee turnover using machine learning (ML) models. For the training process, a dataset composed of 4410 records and 29 variables was used, in the process of training and evaluation of the ten models, the artificial intelligence (AI) method was followed. The findings showed that the XG Boost Classifier (XGBC) and Random Forest (RF) models achieved the best accuracy and performance rates, with 98.8% and 98.7%. Followed by Decision Tree Classifier (DT) with 97.6%, and the other models, such as Gradient Boosting Classifier (GBC), Ada boost Classifier (AC), Logistic Regression (LR), KN Classifier (K-NNC), SGD Classifier (SGDC), Support Vector Classifier (SVC) and Nu Support Vector Classifier (NuSVC), achieved the following rates: 88.4%, 85.4%, 84%, 82.2%, 83.0%, 83.0%, 55.0%, respectively. Finally, it is concluded that the models are useful and effective in prediction. Their practical implementation in human resource management strategies is recommended for proactive intervention.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2025-10-31T18:16:00Z
dc.date.available.none.fl_str_mv 2025-10-31T18:16:00Z
dc.date.issued.fl_str_mv 2024
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format conferenceObject
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2414-6390
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/14263
dc.identifier.journal.es_PE.fl_str_mv Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology
dc.identifier.doi.none.fl_str_mv https://doi.org/10.18687/LACCEI2024.1.1.498
identifier_str_mv 2414-6390
Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology
url https://hdl.handle.net/20.500.12867/14263
https://doi.org/10.18687/LACCEI2024.1.1.498
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Latin American and Caribbean Consortium of Engineering Institutions
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv https://repositorio.utp.edu.pe/backend/api/core/bitstreams/ca2beca4-843d-4f5c-82ff-2c778d15bbc9/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/3dcf9db9-6792-490f-90b6-fad61417ccef/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/b20a85a5-a26f-4b05-b4e3-d751008381f5/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0d13bb8c-0242-4d73-a4ca-69d998986bbc/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/eef59a66-2b04-4586-b446-fed821bd5d8b/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/c135ff93-0329-4cfc-94af-540acf09d9b3/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
09640e576ef94f7478a2e05ee9e42283
46ba5babfc0e6713377c6e7cc9fd63b0
18f658dcb0aebee35871ae10be3a1e79
869d04860956ad12779bf389db644fd3
15417fb557c01f8e415987ab9626bcbe
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1853499315972997120
spelling Iparraguirre-Villanueva, OrlandoChauca-Huete, LuisPaulino-Moreno, Cleoge2025-10-31T18:16:00Z2025-10-31T18:16:00Z20242414-6390https://hdl.handle.net/20.500.12867/14263Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technologyhttps://doi.org/10.18687/LACCEI2024.1.1.498Today's business landscape is characterized by competition and dynamism, which has transformed human resource management into an essential strategic partner for organizations. Employee turnover poses risks that affect productivity and knowledge management. This study focuses on predicting employee turnover using machine learning (ML) models. For the training process, a dataset composed of 4410 records and 29 variables was used, in the process of training and evaluation of the ten models, the artificial intelligence (AI) method was followed. The findings showed that the XG Boost Classifier (XGBC) and Random Forest (RF) models achieved the best accuracy and performance rates, with 98.8% and 98.7%. Followed by Decision Tree Classifier (DT) with 97.6%, and the other models, such as Gradient Boosting Classifier (GBC), Ada boost Classifier (AC), Logistic Regression (LR), KN Classifier (K-NNC), SGD Classifier (SGDC), Support Vector Classifier (SVC) and Nu Support Vector Classifier (NuSVC), achieved the following rates: 88.4%, 85.4%, 84%, 82.2%, 83.0%, 83.0%, 55.0%, respectively. Finally, it is concluded that the models are useful and effective in prediction. Their practical implementation in human resource management strategies is recommended for proactive intervention.Campus Chimboteapplication/pdfengLatin American and Caribbean Consortium of Engineering Institutionsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPMachine learningArtificial intelligenceManagementHuman Resourceshttps://purl.org/pe-repo/ocde/ford#2.02.04Employee attrition prediction using machine learning modelsinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/ca2beca4-843d-4f5c-82ff-2c778d15bbc9/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTIparraguirre.O_Chauca.L_Paulino.C_Conference_Paper_2024.pdf.txtIparraguirre.O_Chauca.L_Paulino.C_Conference_Paper_2024.pdf.txtExtracted texttext/plain30255https://repositorio.utp.edu.pe/backend/api/core/bitstreams/3dcf9db9-6792-490f-90b6-fad61417ccef/download09640e576ef94f7478a2e05ee9e42283MD53O.Iparraguirre_L.Chauca_C.Paulino_Conference_Paper_2024.pdf.txtO.Iparraguirre_L.Chauca_C.Paulino_Conference_Paper_2024.pdf.txtExtracted texttext/plain31073https://repositorio.utp.edu.pe/backend/api/core/bitstreams/b20a85a5-a26f-4b05-b4e3-d751008381f5/download46ba5babfc0e6713377c6e7cc9fd63b0MD58THUMBNAILIparraguirre.O_Chauca.L_Paulino.C_Conference_Paper_2024.pdf.jpgIparraguirre.O_Chauca.L_Paulino.C_Conference_Paper_2024.pdf.jpgGenerated Thumbnailimage/jpeg26183https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0d13bb8c-0242-4d73-a4ca-69d998986bbc/download18f658dcb0aebee35871ae10be3a1e79MD54O.Iparraguirre_L.Chauca_C.Paulino_Conference_Paper_2024.pdf.jpgO.Iparraguirre_L.Chauca_C.Paulino_Conference_Paper_2024.pdf.jpgGenerated Thumbnailimage/jpeg58872https://repositorio.utp.edu.pe/backend/api/core/bitstreams/eef59a66-2b04-4586-b446-fed821bd5d8b/download869d04860956ad12779bf389db644fd3MD59ORIGINALO.Iparraguirre_L.Chauca_C.Paulino_Conference_Paper_2024.pdfO.Iparraguirre_L.Chauca_C.Paulino_Conference_Paper_2024.pdfapplication/pdf622625https://repositorio.utp.edu.pe/backend/api/core/bitstreams/c135ff93-0329-4cfc-94af-540acf09d9b3/download15417fb557c01f8e415987ab9626bcbeMD5520.500.12867/14263oai:repositorio.utp.edu.pe:20.500.12867/142632025-11-30 15:44:32.326https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.905324
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).