Employee attrition prediction using machine learning models
Descripción del Articulo
Today's business landscape is characterized by competition and dynamism, which has transformed human resource management into an essential strategic partner for organizations. Employee turnover poses risks that affect productivity and knowledge management. This study focuses on predicting emplo...
| Autores: | , , |
|---|---|
| Formato: | objeto de conferencia |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad Tecnológica del Perú |
| Repositorio: | UTP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/14263 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12867/14263 https://doi.org/10.18687/LACCEI2024.1.1.498 |
| Nivel de acceso: | acceso abierto |
| Materia: | Machine learning Artificial intelligence Management Human Resources https://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
UTPD_208d91ac2f4319c883d0717902394e21 |
|---|---|
| oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/14263 |
| network_acronym_str |
UTPD |
| network_name_str |
UTP-Institucional |
| repository_id_str |
4782 |
| dc.title.es_PE.fl_str_mv |
Employee attrition prediction using machine learning models |
| title |
Employee attrition prediction using machine learning models |
| spellingShingle |
Employee attrition prediction using machine learning models Iparraguirre-Villanueva, Orlando Machine learning Artificial intelligence Management Human Resources https://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
Employee attrition prediction using machine learning models |
| title_full |
Employee attrition prediction using machine learning models |
| title_fullStr |
Employee attrition prediction using machine learning models |
| title_full_unstemmed |
Employee attrition prediction using machine learning models |
| title_sort |
Employee attrition prediction using machine learning models |
| author |
Iparraguirre-Villanueva, Orlando |
| author_facet |
Iparraguirre-Villanueva, Orlando Chauca-Huete, Luis Paulino-Moreno, Cleoge |
| author_role |
author |
| author2 |
Chauca-Huete, Luis Paulino-Moreno, Cleoge |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Iparraguirre-Villanueva, Orlando Chauca-Huete, Luis Paulino-Moreno, Cleoge |
| dc.subject.es_PE.fl_str_mv |
Machine learning Artificial intelligence Management Human Resources |
| topic |
Machine learning Artificial intelligence Management Human Resources https://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
Today's business landscape is characterized by competition and dynamism, which has transformed human resource management into an essential strategic partner for organizations. Employee turnover poses risks that affect productivity and knowledge management. This study focuses on predicting employee turnover using machine learning (ML) models. For the training process, a dataset composed of 4410 records and 29 variables was used, in the process of training and evaluation of the ten models, the artificial intelligence (AI) method was followed. The findings showed that the XG Boost Classifier (XGBC) and Random Forest (RF) models achieved the best accuracy and performance rates, with 98.8% and 98.7%. Followed by Decision Tree Classifier (DT) with 97.6%, and the other models, such as Gradient Boosting Classifier (GBC), Ada boost Classifier (AC), Logistic Regression (LR), KN Classifier (K-NNC), SGD Classifier (SGDC), Support Vector Classifier (SVC) and Nu Support Vector Classifier (NuSVC), achieved the following rates: 88.4%, 85.4%, 84%, 82.2%, 83.0%, 83.0%, 55.0%, respectively. Finally, it is concluded that the models are useful and effective in prediction. Their practical implementation in human resource management strategies is recommended for proactive intervention. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2025-10-31T18:16:00Z |
| dc.date.available.none.fl_str_mv |
2025-10-31T18:16:00Z |
| dc.date.issued.fl_str_mv |
2024 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
2414-6390 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/14263 |
| dc.identifier.journal.es_PE.fl_str_mv |
Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.18687/LACCEI2024.1.1.498 |
| identifier_str_mv |
2414-6390 Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technology |
| url |
https://hdl.handle.net/20.500.12867/14263 https://doi.org/10.18687/LACCEI2024.1.1.498 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Latin American and Caribbean Consortium of Engineering Institutions |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
| dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
| instname_str |
Universidad Tecnológica del Perú |
| instacron_str |
UTP |
| institution |
UTP |
| reponame_str |
UTP-Institucional |
| collection |
UTP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/ca2beca4-843d-4f5c-82ff-2c778d15bbc9/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/3dcf9db9-6792-490f-90b6-fad61417ccef/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/b20a85a5-a26f-4b05-b4e3-d751008381f5/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0d13bb8c-0242-4d73-a4ca-69d998986bbc/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/eef59a66-2b04-4586-b446-fed821bd5d8b/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/c135ff93-0329-4cfc-94af-540acf09d9b3/download |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 09640e576ef94f7478a2e05ee9e42283 46ba5babfc0e6713377c6e7cc9fd63b0 18f658dcb0aebee35871ae10be3a1e79 869d04860956ad12779bf389db644fd3 15417fb557c01f8e415987ab9626bcbe |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de la Universidad Tecnológica del Perú |
| repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
| _version_ |
1853499315972997120 |
| spelling |
Iparraguirre-Villanueva, OrlandoChauca-Huete, LuisPaulino-Moreno, Cleoge2025-10-31T18:16:00Z2025-10-31T18:16:00Z20242414-6390https://hdl.handle.net/20.500.12867/14263Proceedings of the LACCEI international Multi-conference for Engineering, Education and Technologyhttps://doi.org/10.18687/LACCEI2024.1.1.498Today's business landscape is characterized by competition and dynamism, which has transformed human resource management into an essential strategic partner for organizations. Employee turnover poses risks that affect productivity and knowledge management. This study focuses on predicting employee turnover using machine learning (ML) models. For the training process, a dataset composed of 4410 records and 29 variables was used, in the process of training and evaluation of the ten models, the artificial intelligence (AI) method was followed. The findings showed that the XG Boost Classifier (XGBC) and Random Forest (RF) models achieved the best accuracy and performance rates, with 98.8% and 98.7%. Followed by Decision Tree Classifier (DT) with 97.6%, and the other models, such as Gradient Boosting Classifier (GBC), Ada boost Classifier (AC), Logistic Regression (LR), KN Classifier (K-NNC), SGD Classifier (SGDC), Support Vector Classifier (SVC) and Nu Support Vector Classifier (NuSVC), achieved the following rates: 88.4%, 85.4%, 84%, 82.2%, 83.0%, 83.0%, 55.0%, respectively. Finally, it is concluded that the models are useful and effective in prediction. Their practical implementation in human resource management strategies is recommended for proactive intervention.Campus Chimboteapplication/pdfengLatin American and Caribbean Consortium of Engineering Institutionsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPMachine learningArtificial intelligenceManagementHuman Resourceshttps://purl.org/pe-repo/ocde/ford#2.02.04Employee attrition prediction using machine learning modelsinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/ca2beca4-843d-4f5c-82ff-2c778d15bbc9/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTIparraguirre.O_Chauca.L_Paulino.C_Conference_Paper_2024.pdf.txtIparraguirre.O_Chauca.L_Paulino.C_Conference_Paper_2024.pdf.txtExtracted texttext/plain30255https://repositorio.utp.edu.pe/backend/api/core/bitstreams/3dcf9db9-6792-490f-90b6-fad61417ccef/download09640e576ef94f7478a2e05ee9e42283MD53O.Iparraguirre_L.Chauca_C.Paulino_Conference_Paper_2024.pdf.txtO.Iparraguirre_L.Chauca_C.Paulino_Conference_Paper_2024.pdf.txtExtracted texttext/plain31073https://repositorio.utp.edu.pe/backend/api/core/bitstreams/b20a85a5-a26f-4b05-b4e3-d751008381f5/download46ba5babfc0e6713377c6e7cc9fd63b0MD58THUMBNAILIparraguirre.O_Chauca.L_Paulino.C_Conference_Paper_2024.pdf.jpgIparraguirre.O_Chauca.L_Paulino.C_Conference_Paper_2024.pdf.jpgGenerated Thumbnailimage/jpeg26183https://repositorio.utp.edu.pe/backend/api/core/bitstreams/0d13bb8c-0242-4d73-a4ca-69d998986bbc/download18f658dcb0aebee35871ae10be3a1e79MD54O.Iparraguirre_L.Chauca_C.Paulino_Conference_Paper_2024.pdf.jpgO.Iparraguirre_L.Chauca_C.Paulino_Conference_Paper_2024.pdf.jpgGenerated Thumbnailimage/jpeg58872https://repositorio.utp.edu.pe/backend/api/core/bitstreams/eef59a66-2b04-4586-b446-fed821bd5d8b/download869d04860956ad12779bf389db644fd3MD59ORIGINALO.Iparraguirre_L.Chauca_C.Paulino_Conference_Paper_2024.pdfO.Iparraguirre_L.Chauca_C.Paulino_Conference_Paper_2024.pdfapplication/pdf622625https://repositorio.utp.edu.pe/backend/api/core/bitstreams/c135ff93-0329-4cfc-94af-540acf09d9b3/download15417fb557c01f8e415987ab9626bcbeMD5520.500.12867/14263oai:repositorio.utp.edu.pe:20.500.12867/142632025-11-30 15:44:32.326https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.905324 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).