Methodology for the use of machine learning, applied in predicting the level of success in legal cases

Descripción del Articulo

ICTs have allowed the applications of artificial intelligence to grow exponentially, where different applications are being presented, based on the application of neural networks as prediction mechanisms for different processes and applications, in the present work the use of the Neural networks for...

Descripción completa

Detalles Bibliográficos
Autores: Rojas Romero, Karin Corina, Auccahuasi, Wilver, Herrera, Lucas, Urbano, Kitty, Peláez, Brayan, Flores Peña, Pedro, Montes Osorio, Yuly, Bernardo, Grisi, Bernardo, Madelaine, Meza, Sandra, Ovalle, Christian, Hilario, Francisco, Liendo, Milner, Sernaque, Fernando
Formato: objeto de conferencia
Fecha de Publicación:2022
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/5778
Enlace del recurso:https://hdl.handle.net/20.500.12867/5778
Nivel de acceso:acceso abierto
Materia:Machine learning
Legal procedure
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:ICTs have allowed the applications of artificial intelligence to grow exponentially, where different applications are being presented, based on the application of neural networks as prediction mechanisms for different processes and applications, in the present work the use of the Neural networks for the legal case prediction process, in which the analysis of approximately 200 cases was used between cases that had "positive and negative" final results, the expected results after implementing the solution in the MATLAB tool, they presented us effectiveness results in a value of 93%, as a conclusion we can indicate that the model provided allows us to be applied in other conditions as well as to be scaled, taking into account the historical data that may be available for the training process.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).