Methodology for the use of machine learning, applied in predicting the level of success in legal cases

Descripción del Articulo

ICTs have allowed the applications of artificial intelligence to grow exponentially, where different applications are being presented, based on the application of neural networks as prediction mechanisms for different processes and applications, in the present work the use of the Neural networks for...

Descripción completa

Detalles Bibliográficos
Autores: Rojas Romero, Karin Corina, Auccahuasi, Wilver, Herrera, Lucas, Urbano, Kitty, Peláez, Brayan, Flores Peña, Pedro, Montes Osorio, Yuly, Bernardo, Grisi, Bernardo, Madelaine, Meza, Sandra, Ovalle, Christian, Hilario, Francisco, Liendo, Milner, Sernaque, Fernando
Formato: objeto de conferencia
Fecha de Publicación:2022
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/5778
Enlace del recurso:https://hdl.handle.net/20.500.12867/5778
Nivel de acceso:acceso abierto
Materia:Machine learning
Legal procedure
https://purl.org/pe-repo/ocde/ford#2.02.04
id UTPD_17d321f8c4bb1aefa7686d9fd7340faa
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/5778
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Methodology for the use of machine learning, applied in predicting the level of success in legal cases
title Methodology for the use of machine learning, applied in predicting the level of success in legal cases
spellingShingle Methodology for the use of machine learning, applied in predicting the level of success in legal cases
Rojas Romero, Karin Corina
Machine learning
Legal procedure
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Methodology for the use of machine learning, applied in predicting the level of success in legal cases
title_full Methodology for the use of machine learning, applied in predicting the level of success in legal cases
title_fullStr Methodology for the use of machine learning, applied in predicting the level of success in legal cases
title_full_unstemmed Methodology for the use of machine learning, applied in predicting the level of success in legal cases
title_sort Methodology for the use of machine learning, applied in predicting the level of success in legal cases
author Rojas Romero, Karin Corina
author_facet Rojas Romero, Karin Corina
Auccahuasi, Wilver
Herrera, Lucas
Urbano, Kitty
Peláez, Brayan
Flores Peña, Pedro
Montes Osorio, Yuly
Bernardo, Grisi
Bernardo, Madelaine
Meza, Sandra
Ovalle, Christian
Hilario, Francisco
Liendo, Milner
Sernaque, Fernando
author_role author
author2 Auccahuasi, Wilver
Herrera, Lucas
Urbano, Kitty
Peláez, Brayan
Flores Peña, Pedro
Montes Osorio, Yuly
Bernardo, Grisi
Bernardo, Madelaine
Meza, Sandra
Ovalle, Christian
Hilario, Francisco
Liendo, Milner
Sernaque, Fernando
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Rojas Romero, Karin Corina
Auccahuasi, Wilver
Herrera, Lucas
Urbano, Kitty
Peláez, Brayan
Flores Peña, Pedro
Montes Osorio, Yuly
Bernardo, Grisi
Bernardo, Madelaine
Meza, Sandra
Ovalle, Christian
Hilario, Francisco
Liendo, Milner
Sernaque, Fernando
dc.subject.es_PE.fl_str_mv Machine learning
Legal procedure
topic Machine learning
Legal procedure
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description ICTs have allowed the applications of artificial intelligence to grow exponentially, where different applications are being presented, based on the application of neural networks as prediction mechanisms for different processes and applications, in the present work the use of the Neural networks for the legal case prediction process, in which the analysis of approximately 200 cases was used between cases that had "positive and negative" final results, the expected results after implementing the solution in the MATLAB tool, they presented us effectiveness results in a value of 93%, as a conclusion we can indicate that the model provided allows us to be applied in other conditions as well as to be scaled, taking into account the historical data that may be available for the training process.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-27T06:30:47Z
dc.date.available.none.fl_str_mv 2022-07-27T06:30:47Z
dc.date.issued.fl_str_mv 2022
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format conferenceObject
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/5778
dc.identifier.journal.es_PE.fl_str_mv CEUR Workshop Proceedings
url https://hdl.handle.net/20.500.12867/5778
identifier_str_mv CEUR Workshop Proceedings
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv RWTH Aachen University
dc.publisher.country.es_PE.fl_str_mv DE
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv https://repositorio.utp.edu.pe/backend/api/core/bitstreams/11e8edac-4106-4c40-be12-39dcc13b7fcb/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/54de2408-6e37-4a12-af05-40536d85fe48/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/32b24690-2834-4f13-9d8d-f2370dff3e45/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/ebfa23a9-f8e2-4bee-881d-91101999b282/download
bitstream.checksum.fl_str_mv 8a2f7934fe9e1dad27db63a18191d065
8a4605be74aa9ea9d79846c1fba20a33
09e1a32d70b0c56ba60e6c0998c22ac1
d97c8394f4ac60583ce08f1ea7b18d4f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1852865184457031680
spelling Rojas Romero, Karin CorinaAuccahuasi, WilverHerrera, LucasUrbano, KittyPeláez, BrayanFlores Peña, PedroMontes Osorio, YulyBernardo, GrisiBernardo, MadelaineMeza, SandraOvalle, ChristianHilario, FranciscoLiendo, MilnerSernaque, Fernando2022-07-27T06:30:47Z2022-07-27T06:30:47Z2022https://hdl.handle.net/20.500.12867/5778CEUR Workshop ProceedingsICTs have allowed the applications of artificial intelligence to grow exponentially, where different applications are being presented, based on the application of neural networks as prediction mechanisms for different processes and applications, in the present work the use of the Neural networks for the legal case prediction process, in which the analysis of approximately 200 cases was used between cases that had "positive and negative" final results, the expected results after implementing the solution in the MATLAB tool, they presented us effectiveness results in a value of 93%, as a conclusion we can indicate that the model provided allows us to be applied in other conditions as well as to be scaled, taking into account the historical data that may be available for the training process.Campus Ateapplication/pdfspaRWTH Aachen UniversityDEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPMachine learningLegal procedurehttps://purl.org/pe-repo/ocde/ford#2.02.04Methodology for the use of machine learning, applied in predicting the level of success in legal casesinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionORIGINALK.Rojas_Conference_Paper-2.pdfK.Rojas_Conference_Paper-2.pdfapplication/pdf574819https://repositorio.utp.edu.pe/backend/api/core/bitstreams/11e8edac-4106-4c40-be12-39dcc13b7fcb/download8a2f7934fe9e1dad27db63a18191d065MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/54de2408-6e37-4a12-af05-40536d85fe48/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTK.Rojas_Conference_Paper-2.pdf.txtK.Rojas_Conference_Paper-2.pdf.txtExtracted texttext/plain19006https://repositorio.utp.edu.pe/backend/api/core/bitstreams/32b24690-2834-4f13-9d8d-f2370dff3e45/download09e1a32d70b0c56ba60e6c0998c22ac1MD55THUMBNAILK.Rojas_Conference_Paper-2.pdf.jpgK.Rojas_Conference_Paper-2.pdf.jpgGenerated Thumbnailimage/jpeg37418https://repositorio.utp.edu.pe/backend/api/core/bitstreams/ebfa23a9-f8e2-4bee-881d-91101999b282/downloadd97c8394f4ac60583ce08f1ea7b18d4fMD5620.500.12867/5778oai:repositorio.utp.edu.pe:20.500.12867/57782025-11-30 15:52:10.877https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.415835
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).