Methodology for the use of machine learning, applied in predicting the level of success in legal cases
Descripción del Articulo
ICTs have allowed the applications of artificial intelligence to grow exponentially, where different applications are being presented, based on the application of neural networks as prediction mechanisms for different processes and applications, in the present work the use of the Neural networks for...
| Autores: | , , , , , , , , , , , , , |
|---|---|
| Formato: | objeto de conferencia |
| Fecha de Publicación: | 2022 |
| Institución: | Universidad Tecnológica del Perú |
| Repositorio: | UTP-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/5778 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12867/5778 |
| Nivel de acceso: | acceso abierto |
| Materia: | Machine learning Legal procedure https://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
UTPD_17d321f8c4bb1aefa7686d9fd7340faa |
|---|---|
| oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/5778 |
| network_acronym_str |
UTPD |
| network_name_str |
UTP-Institucional |
| repository_id_str |
4782 |
| dc.title.es_PE.fl_str_mv |
Methodology for the use of machine learning, applied in predicting the level of success in legal cases |
| title |
Methodology for the use of machine learning, applied in predicting the level of success in legal cases |
| spellingShingle |
Methodology for the use of machine learning, applied in predicting the level of success in legal cases Rojas Romero, Karin Corina Machine learning Legal procedure https://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
Methodology for the use of machine learning, applied in predicting the level of success in legal cases |
| title_full |
Methodology for the use of machine learning, applied in predicting the level of success in legal cases |
| title_fullStr |
Methodology for the use of machine learning, applied in predicting the level of success in legal cases |
| title_full_unstemmed |
Methodology for the use of machine learning, applied in predicting the level of success in legal cases |
| title_sort |
Methodology for the use of machine learning, applied in predicting the level of success in legal cases |
| author |
Rojas Romero, Karin Corina |
| author_facet |
Rojas Romero, Karin Corina Auccahuasi, Wilver Herrera, Lucas Urbano, Kitty Peláez, Brayan Flores Peña, Pedro Montes Osorio, Yuly Bernardo, Grisi Bernardo, Madelaine Meza, Sandra Ovalle, Christian Hilario, Francisco Liendo, Milner Sernaque, Fernando |
| author_role |
author |
| author2 |
Auccahuasi, Wilver Herrera, Lucas Urbano, Kitty Peláez, Brayan Flores Peña, Pedro Montes Osorio, Yuly Bernardo, Grisi Bernardo, Madelaine Meza, Sandra Ovalle, Christian Hilario, Francisco Liendo, Milner Sernaque, Fernando |
| author2_role |
author author author author author author author author author author author author author |
| dc.contributor.author.fl_str_mv |
Rojas Romero, Karin Corina Auccahuasi, Wilver Herrera, Lucas Urbano, Kitty Peláez, Brayan Flores Peña, Pedro Montes Osorio, Yuly Bernardo, Grisi Bernardo, Madelaine Meza, Sandra Ovalle, Christian Hilario, Francisco Liendo, Milner Sernaque, Fernando |
| dc.subject.es_PE.fl_str_mv |
Machine learning Legal procedure |
| topic |
Machine learning Legal procedure https://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
ICTs have allowed the applications of artificial intelligence to grow exponentially, where different applications are being presented, based on the application of neural networks as prediction mechanisms for different processes and applications, in the present work the use of the Neural networks for the legal case prediction process, in which the analysis of approximately 200 cases was used between cases that had "positive and negative" final results, the expected results after implementing the solution in the MATLAB tool, they presented us effectiveness results in a value of 93%, as a conclusion we can indicate that the model provided allows us to be applied in other conditions as well as to be scaled, taking into account the historical data that may be available for the training process. |
| publishDate |
2022 |
| dc.date.accessioned.none.fl_str_mv |
2022-07-27T06:30:47Z |
| dc.date.available.none.fl_str_mv |
2022-07-27T06:30:47Z |
| dc.date.issued.fl_str_mv |
2022 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/5778 |
| dc.identifier.journal.es_PE.fl_str_mv |
CEUR Workshop Proceedings |
| url |
https://hdl.handle.net/20.500.12867/5778 |
| identifier_str_mv |
CEUR Workshop Proceedings |
| dc.language.iso.es_PE.fl_str_mv |
spa |
| language |
spa |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
RWTH Aachen University |
| dc.publisher.country.es_PE.fl_str_mv |
DE |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
| dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
| instname_str |
Universidad Tecnológica del Perú |
| instacron_str |
UTP |
| institution |
UTP |
| reponame_str |
UTP-Institucional |
| collection |
UTP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/11e8edac-4106-4c40-be12-39dcc13b7fcb/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/54de2408-6e37-4a12-af05-40536d85fe48/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/32b24690-2834-4f13-9d8d-f2370dff3e45/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/ebfa23a9-f8e2-4bee-881d-91101999b282/download |
| bitstream.checksum.fl_str_mv |
8a2f7934fe9e1dad27db63a18191d065 8a4605be74aa9ea9d79846c1fba20a33 09e1a32d70b0c56ba60e6c0998c22ac1 d97c8394f4ac60583ce08f1ea7b18d4f |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de la Universidad Tecnológica del Perú |
| repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
| _version_ |
1852865184457031680 |
| spelling |
Rojas Romero, Karin CorinaAuccahuasi, WilverHerrera, LucasUrbano, KittyPeláez, BrayanFlores Peña, PedroMontes Osorio, YulyBernardo, GrisiBernardo, MadelaineMeza, SandraOvalle, ChristianHilario, FranciscoLiendo, MilnerSernaque, Fernando2022-07-27T06:30:47Z2022-07-27T06:30:47Z2022https://hdl.handle.net/20.500.12867/5778CEUR Workshop ProceedingsICTs have allowed the applications of artificial intelligence to grow exponentially, where different applications are being presented, based on the application of neural networks as prediction mechanisms for different processes and applications, in the present work the use of the Neural networks for the legal case prediction process, in which the analysis of approximately 200 cases was used between cases that had "positive and negative" final results, the expected results after implementing the solution in the MATLAB tool, they presented us effectiveness results in a value of 93%, as a conclusion we can indicate that the model provided allows us to be applied in other conditions as well as to be scaled, taking into account the historical data that may be available for the training process.Campus Ateapplication/pdfspaRWTH Aachen UniversityDEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPMachine learningLegal procedurehttps://purl.org/pe-repo/ocde/ford#2.02.04Methodology for the use of machine learning, applied in predicting the level of success in legal casesinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionORIGINALK.Rojas_Conference_Paper-2.pdfK.Rojas_Conference_Paper-2.pdfapplication/pdf574819https://repositorio.utp.edu.pe/backend/api/core/bitstreams/11e8edac-4106-4c40-be12-39dcc13b7fcb/download8a2f7934fe9e1dad27db63a18191d065MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/54de2408-6e37-4a12-af05-40536d85fe48/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTK.Rojas_Conference_Paper-2.pdf.txtK.Rojas_Conference_Paper-2.pdf.txtExtracted texttext/plain19006https://repositorio.utp.edu.pe/backend/api/core/bitstreams/32b24690-2834-4f13-9d8d-f2370dff3e45/download09e1a32d70b0c56ba60e6c0998c22ac1MD55THUMBNAILK.Rojas_Conference_Paper-2.pdf.jpgK.Rojas_Conference_Paper-2.pdf.jpgGenerated Thumbnailimage/jpeg37418https://repositorio.utp.edu.pe/backend/api/core/bitstreams/ebfa23a9-f8e2-4bee-881d-91101999b282/downloadd97c8394f4ac60583ce08f1ea7b18d4fMD5620.500.12867/5778oai:repositorio.utp.edu.pe:20.500.12867/57782025-11-30 15:52:10.877https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.415835 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).