Supervised Sentiment Analysis Algorithms
Descripción del Articulo
Sentiment analysis is used to analyse customer sentiment by the process of using natural language processing, text analysis, and statistics. A good customer survey understands the sentiment of their customers—what, how and why they’re saying it. Sentiment dataset can be found mainly in tweets, comme...
| Autores: | , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2021 |
| Institución: | Universidad Tecnológica del Perú |
| Repositorio: | UTP-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/4571 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12867/4571 |
| Nivel de acceso: | acceso abierto |
| Materia: | Opinion mining (análisis de sentimientos) Machine learning Supervised learning Aprendizaje supervisado Aprendizaje automático https://purl.org/pe-repo/ocde/ford#5.02.04 |
| Sumario: | Sentiment analysis is used to analyse customer sentiment by the process of using natural language processing, text analysis, and statistics. A good customer survey understands the sentiment of their customers—what, how and why they’re saying it. Sentiment dataset can be found mainly in tweets, comments and reviews. Sentiment Analysis understands emotions with the help of software, and it is playing an inevitable role in today’s workplaces. Sentiment analysis for opinion mining has become an emerging area where more research and innovations are done. Sentiment or opinion analysis based on a domain is done using several algorithms. Machine learning is a concept among this area. In this, the main focus is on the supervised sentiment analysis or opinion mining algorithms. Supervised learning is a division coming under machine learning. Different methods of supervised learning and sentiment analysis algorithms are considered and their mode of functioning is studied. Main focus of this paper is on the recent trends of research and studies for sentiment classification, taking into consideration the accuracy of different algorithmic techniques that can be implemented for accurate prediction in sentiment Analysis |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).