APPLICATION OF DATA MINING IN MARKETING USING E-COMMERCE CUSTOMER SENTIMENT ANALYSIS

Descripción del Articulo

In this study, sentiment analysis was developed and applied to technological products in the Twitter/X social network, also, the opinions expressed by customers were determined and finally the most suitable predictive model derived from Machine Learning was identified. For this purpose, 7102 tweets...

Descripción completa

Detalles Bibliográficos
Autores: PETRLIK, IVAN, Coveñas Lalupu , José, CARRANZA BARRENA, WILFREDO, TORRES TALAVERANO, LUZ
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad de San Martín de Porres
Repositorio:Revistas - Universidad de San Martín de Porres
Lenguaje:español
OAI Identifier:oai:revistas.usmp.edu.pe:article/2855
Enlace del recurso:https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/2855
Nivel de acceso:acceso abierto
Materia:Minería de datos, análisis de sentimientos, aprendizaje automático, e-commerce
Data mining, sentiment analysis, machine learning, e-commerce
Extração de dados, análise de sentimentos, aprendizagem automática, comércio eletrónico
Descripción
Sumario:In this study, sentiment analysis was developed and applied to technological products in the Twitter/X social network, also, the opinions expressed by customers were determined and finally the most suitable predictive model derived from Machine Learning was identified. For this purpose, 7102 tweets related to Apple and Samsung products were collected, using the methodology proposed by Erl, Khattak and Buhler which facilitated the implementation of its critical phases. The results obtained from sentiment analysis were evaluated using standard metrics such as Accuracy, Precision, Recall and F1-Score, applied to four machine learning models: K-Nearest Neighbors (KNN), Logistic Regression (LR), Random Forest (RF) and CatBoost Classifier (CC). Of these, the CatBoost Classifier proved to be the most effective, achieving 89% in Accuracy, 90% in Precision, 89% in Recall and 88% in F1-Score. It was concluded that the CatBoost Classifier model was the optimal model for analyzing sentiment on Twitter/X, due to its ability to provide valuable insights into the perception of promoted technology products enabling effectiveness in digital marketing campaigns.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).