APPLICATION OF DATA MINING IN MARKETING USING E-COMMERCE CUSTOMER SENTIMENT ANALYSIS

Descripción del Articulo

In this study, sentiment analysis was developed and applied to technological products in the Twitter/X social network, also, the opinions expressed by customers were determined and finally the most suitable predictive model derived from Machine Learning was identified. For this purpose, 7102 tweets...

Descripción completa

Detalles Bibliográficos
Autores: PETRLIK, IVAN, Coveñas Lalupu , José, CARRANZA BARRENA, WILFREDO, TORRES TALAVERANO, LUZ
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad de San Martín de Porres
Repositorio:Revistas - Universidad de San Martín de Porres
Lenguaje:español
OAI Identifier:oai:revistas.usmp.edu.pe:article/2855
Enlace del recurso:https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/2855
Nivel de acceso:acceso abierto
Materia:Minería de datos, análisis de sentimientos, aprendizaje automático, e-commerce
Data mining, sentiment analysis, machine learning, e-commerce
Extração de dados, análise de sentimentos, aprendizagem automática, comércio eletrónico
id REVUSMP_21feadd56b1dcf10e43e0ae4e29effd2
oai_identifier_str oai:revistas.usmp.edu.pe:article/2855
network_acronym_str REVUSMP
network_name_str Revistas - Universidad de San Martín de Porres
repository_id_str
dc.title.none.fl_str_mv APPLICATION OF DATA MINING IN MARKETING USING E-COMMERCE CUSTOMER SENTIMENT ANALYSIS
APLICACIÓN DE LA MINERÍA DE DATOS EN EL MARKETING USANDO EL ANÁLISIS DE SENTIMIENTOS DE LOS CLIENTES E-COMMERCE
APLICAÇÃO DA EXTRACÇÃO DE DADOS NO MARKETING UTILIZANDO A ANÁLISE DO SENTIMENTO DO CLIENTE DO COMÉRCIO ELECTRÓNICO
title APPLICATION OF DATA MINING IN MARKETING USING E-COMMERCE CUSTOMER SENTIMENT ANALYSIS
spellingShingle APPLICATION OF DATA MINING IN MARKETING USING E-COMMERCE CUSTOMER SENTIMENT ANALYSIS
PETRLIK, IVAN
Minería de datos, análisis de sentimientos, aprendizaje automático, e-commerce
Data mining, sentiment analysis, machine learning, e-commerce
Extração de dados, análise de sentimentos, aprendizagem automática, comércio eletrónico
title_short APPLICATION OF DATA MINING IN MARKETING USING E-COMMERCE CUSTOMER SENTIMENT ANALYSIS
title_full APPLICATION OF DATA MINING IN MARKETING USING E-COMMERCE CUSTOMER SENTIMENT ANALYSIS
title_fullStr APPLICATION OF DATA MINING IN MARKETING USING E-COMMERCE CUSTOMER SENTIMENT ANALYSIS
title_full_unstemmed APPLICATION OF DATA MINING IN MARKETING USING E-COMMERCE CUSTOMER SENTIMENT ANALYSIS
title_sort APPLICATION OF DATA MINING IN MARKETING USING E-COMMERCE CUSTOMER SENTIMENT ANALYSIS
dc.creator.none.fl_str_mv PETRLIK, IVAN
Coveñas Lalupu , José
CARRANZA BARRENA, WILFREDO
TORRES TALAVERANO, LUZ
author PETRLIK, IVAN
author_facet PETRLIK, IVAN
Coveñas Lalupu , José
CARRANZA BARRENA, WILFREDO
TORRES TALAVERANO, LUZ
author_role author
author2 Coveñas Lalupu , José
CARRANZA BARRENA, WILFREDO
TORRES TALAVERANO, LUZ
author2_role author
author
author
dc.subject.none.fl_str_mv Minería de datos, análisis de sentimientos, aprendizaje automático, e-commerce
Data mining, sentiment analysis, machine learning, e-commerce
Extração de dados, análise de sentimentos, aprendizagem automática, comércio eletrónico
topic Minería de datos, análisis de sentimientos, aprendizaje automático, e-commerce
Data mining, sentiment analysis, machine learning, e-commerce
Extração de dados, análise de sentimentos, aprendizagem automática, comércio eletrónico
description In this study, sentiment analysis was developed and applied to technological products in the Twitter/X social network, also, the opinions expressed by customers were determined and finally the most suitable predictive model derived from Machine Learning was identified. For this purpose, 7102 tweets related to Apple and Samsung products were collected, using the methodology proposed by Erl, Khattak and Buhler which facilitated the implementation of its critical phases. The results obtained from sentiment analysis were evaluated using standard metrics such as Accuracy, Precision, Recall and F1-Score, applied to four machine learning models: K-Nearest Neighbors (KNN), Logistic Regression (LR), Random Forest (RF) and CatBoost Classifier (CC). Of these, the CatBoost Classifier proved to be the most effective, achieving 89% in Accuracy, 90% in Precision, 89% in Recall and 88% in F1-Score. It was concluded that the CatBoost Classifier model was the optimal model for analyzing sentiment on Twitter/X, due to its ability to provide valuable insights into the perception of promoted technology products enabling effectiveness in digital marketing campaigns.
publishDate 2024
dc.date.none.fl_str_mv 2024-06-29
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/2855
url https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/2855
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/2855/3777
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de San Martín de Porres
publisher.none.fl_str_mv Universidad de San Martín de Porres
dc.source.none.fl_str_mv Campus; Vol. 29 No. 37 (2024): Campus XXXVII
Campus; Vol. 29 Núm. 37 (2024): Campus XXXVII
Campus; v. 29 n. 37 (2024): Campus XXXVII
2523-1820
1812-6049
reponame:Revistas - Universidad de San Martín de Porres
instname:Universidad de San Martín de Porres
instacron:USMP
instname_str Universidad de San Martín de Porres
instacron_str USMP
institution USMP
reponame_str Revistas - Universidad de San Martín de Porres
collection Revistas - Universidad de San Martín de Porres
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1847517282160345088
spelling APPLICATION OF DATA MINING IN MARKETING USING E-COMMERCE CUSTOMER SENTIMENT ANALYSISAPLICACIÓN DE LA MINERÍA DE DATOS EN EL MARKETING USANDO EL ANÁLISIS DE SENTIMIENTOS DE LOS CLIENTES E-COMMERCEAPLICAÇÃO DA EXTRACÇÃO DE DADOS NO MARKETING UTILIZANDO A ANÁLISE DO SENTIMENTO DO CLIENTE DO COMÉRCIO ELECTRÓNICOPETRLIK, IVANCoveñas Lalupu , José CARRANZA BARRENA, WILFREDOTORRES TALAVERANO, LUZMinería de datos, análisis de sentimientos, aprendizaje automático, e-commerceData mining, sentiment analysis, machine learning, e-commerceExtração de dados, análise de sentimentos, aprendizagem automática, comércio eletrónicoIn this study, sentiment analysis was developed and applied to technological products in the Twitter/X social network, also, the opinions expressed by customers were determined and finally the most suitable predictive model derived from Machine Learning was identified. For this purpose, 7102 tweets related to Apple and Samsung products were collected, using the methodology proposed by Erl, Khattak and Buhler which facilitated the implementation of its critical phases. The results obtained from sentiment analysis were evaluated using standard metrics such as Accuracy, Precision, Recall and F1-Score, applied to four machine learning models: K-Nearest Neighbors (KNN), Logistic Regression (LR), Random Forest (RF) and CatBoost Classifier (CC). Of these, the CatBoost Classifier proved to be the most effective, achieving 89% in Accuracy, 90% in Precision, 89% in Recall and 88% in F1-Score. It was concluded that the CatBoost Classifier model was the optimal model for analyzing sentiment on Twitter/X, due to its ability to provide valuable insights into the perception of promoted technology products enabling effectiveness in digital marketing campaigns.En este estudio se desarrolló y aplicó el análisis de sentimientos respecto a los productos tecnológicos en la red social Twitter/X, asimismo, se determinó las opiniones expresadas por los clientes donde finalmente se identificó el modelo predictivo más conveniente derivado del Machine Learning. Para ello, se recolectaron 7102 tweets relacionados a los productos de Apple y Samsung, empleando la metodología propuesta por Erl, Khattak y Buhler la cual facilitó la implementación de sus fases críticas. Los resultados obtenidos del análisis de sentimientos se evaluaron mediante métricas estándar como Accuracy, Precision, Recall y F1-Score, aplicadas a cuatro modelos de aprendizaje automático: K-Nearest Neighbors (KNN), Logistic Regression (LR), Random Forest (RF) y CatBoost Classifier (CC). De estos, el CatBoost Classifier demostró ser el más efectivo, logrando un 89% en Accuracy, 90% en Precision, 89% en Recall y 88% en F1-Score. Se concluyó que el modelo CatBoost Classifier fue el un modelo óptimo para analizar los sentimientos en Twitter/X, debido a su capacidad de proporcionar insights valiosos sobre la percepción de los productos tecnológicos promocionados permitiendo la eficacia en las campañas de marketing digital.Neste estudo, desenvolveu-se e aplicou-se a análise de sentimento a produtos tecnológicos na rede social Twitter/X, bem como para determinar as opiniões expressas pelos clientes, onde finalmente se identificou o modelo preditivo mais adequado derivado de Machine Learning. Para tal, foram recolhidos 7102 tweets relacionados com produtos Apple e Samsung, utilizando a metodologia proposta por Erl, Khattak e Buhler que facilitou a implementação das suas fases críticas. Os resultados obtidos a partir da análise de sentimento foram avaliados utilizando métricas padrão como Accuracy, Precision, Recall e F1-Score, aplicadas a quatro modelos de machine learning: K-Nearest Neighbors (KNN), Logistic Regression (LR), Random Forest (RF) e CatBoost Classifier (CC). Destes, o classificador CatBoost revelou-se o mais eficaz, atingindo 89% de exatidão, 90% de precisão, 89% de recuperação e 88% de pontuação F1. Concluiu-se que o modelo CatBoost Classifier era o modelo ideal para analisar o sentimento no Twitter/X, devido à sua capacidade de fornecer informações valiosas sobre a perceção dos produtos tecnológicos promovidos, permitindo campanhas de marketing digital eficazes.  Universidad de San Martín de Porres2024-06-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/2855Campus; Vol. 29 No. 37 (2024): Campus XXXVIICampus; Vol. 29 Núm. 37 (2024): Campus XXXVIICampus; v. 29 n. 37 (2024): Campus XXXVII2523-18201812-6049reponame:Revistas - Universidad de San Martín de Porresinstname:Universidad de San Martín de Porresinstacron:USMPspahttps://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/2855/3777Derechos de autor 2024 DR.IVAN CARLO PETRLIK AZABACHE, DR. JOSÉ COVEÑAS LALUPU, Msc.WILFREDO CARRANZA BARRENA, BACH.LUZ ELENA TORRES TALAVERANOhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:revistas.usmp.edu.pe:article/28552025-08-22T14:28:43Z
score 12.63363
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).