APPLICATION OF DATA MINING IN MARKETING USING E-COMMERCE CUSTOMER SENTIMENT ANALYSIS
Descripción del Articulo
In this study, sentiment analysis was developed and applied to technological products in the Twitter/X social network, also, the opinions expressed by customers were determined and finally the most suitable predictive model derived from Machine Learning was identified. For this purpose, 7102 tweets...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad de San Martín de Porres |
| Repositorio: | Revistas - Universidad de San Martín de Porres |
| Lenguaje: | español |
| OAI Identifier: | oai:revistas.usmp.edu.pe:article/2855 |
| Enlace del recurso: | https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/2855 |
| Nivel de acceso: | acceso abierto |
| Materia: | Minería de datos, análisis de sentimientos, aprendizaje automático, e-commerce Data mining, sentiment analysis, machine learning, e-commerce Extração de dados, análise de sentimentos, aprendizagem automática, comércio eletrónico |
| id |
REVUSMP_21feadd56b1dcf10e43e0ae4e29effd2 |
|---|---|
| oai_identifier_str |
oai:revistas.usmp.edu.pe:article/2855 |
| network_acronym_str |
REVUSMP |
| network_name_str |
Revistas - Universidad de San Martín de Porres |
| repository_id_str |
|
| dc.title.none.fl_str_mv |
APPLICATION OF DATA MINING IN MARKETING USING E-COMMERCE CUSTOMER SENTIMENT ANALYSIS APLICACIÓN DE LA MINERÍA DE DATOS EN EL MARKETING USANDO EL ANÁLISIS DE SENTIMIENTOS DE LOS CLIENTES E-COMMERCE APLICAÇÃO DA EXTRACÇÃO DE DADOS NO MARKETING UTILIZANDO A ANÁLISE DO SENTIMENTO DO CLIENTE DO COMÉRCIO ELECTRÓNICO |
| title |
APPLICATION OF DATA MINING IN MARKETING USING E-COMMERCE CUSTOMER SENTIMENT ANALYSIS |
| spellingShingle |
APPLICATION OF DATA MINING IN MARKETING USING E-COMMERCE CUSTOMER SENTIMENT ANALYSIS PETRLIK, IVAN Minería de datos, análisis de sentimientos, aprendizaje automático, e-commerce Data mining, sentiment analysis, machine learning, e-commerce Extração de dados, análise de sentimentos, aprendizagem automática, comércio eletrónico |
| title_short |
APPLICATION OF DATA MINING IN MARKETING USING E-COMMERCE CUSTOMER SENTIMENT ANALYSIS |
| title_full |
APPLICATION OF DATA MINING IN MARKETING USING E-COMMERCE CUSTOMER SENTIMENT ANALYSIS |
| title_fullStr |
APPLICATION OF DATA MINING IN MARKETING USING E-COMMERCE CUSTOMER SENTIMENT ANALYSIS |
| title_full_unstemmed |
APPLICATION OF DATA MINING IN MARKETING USING E-COMMERCE CUSTOMER SENTIMENT ANALYSIS |
| title_sort |
APPLICATION OF DATA MINING IN MARKETING USING E-COMMERCE CUSTOMER SENTIMENT ANALYSIS |
| dc.creator.none.fl_str_mv |
PETRLIK, IVAN Coveñas Lalupu , José CARRANZA BARRENA, WILFREDO TORRES TALAVERANO, LUZ |
| author |
PETRLIK, IVAN |
| author_facet |
PETRLIK, IVAN Coveñas Lalupu , José CARRANZA BARRENA, WILFREDO TORRES TALAVERANO, LUZ |
| author_role |
author |
| author2 |
Coveñas Lalupu , José CARRANZA BARRENA, WILFREDO TORRES TALAVERANO, LUZ |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Minería de datos, análisis de sentimientos, aprendizaje automático, e-commerce Data mining, sentiment analysis, machine learning, e-commerce Extração de dados, análise de sentimentos, aprendizagem automática, comércio eletrónico |
| topic |
Minería de datos, análisis de sentimientos, aprendizaje automático, e-commerce Data mining, sentiment analysis, machine learning, e-commerce Extração de dados, análise de sentimentos, aprendizagem automática, comércio eletrónico |
| description |
In this study, sentiment analysis was developed and applied to technological products in the Twitter/X social network, also, the opinions expressed by customers were determined and finally the most suitable predictive model derived from Machine Learning was identified. For this purpose, 7102 tweets related to Apple and Samsung products were collected, using the methodology proposed by Erl, Khattak and Buhler which facilitated the implementation of its critical phases. The results obtained from sentiment analysis were evaluated using standard metrics such as Accuracy, Precision, Recall and F1-Score, applied to four machine learning models: K-Nearest Neighbors (KNN), Logistic Regression (LR), Random Forest (RF) and CatBoost Classifier (CC). Of these, the CatBoost Classifier proved to be the most effective, achieving 89% in Accuracy, 90% in Precision, 89% in Recall and 88% in F1-Score. It was concluded that the CatBoost Classifier model was the optimal model for analyzing sentiment on Twitter/X, due to its ability to provide valuable insights into the perception of promoted technology products enabling effectiveness in digital marketing campaigns. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-06-29 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/2855 |
| url |
https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/2855 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/2855/3777 |
| dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidad de San Martín de Porres |
| publisher.none.fl_str_mv |
Universidad de San Martín de Porres |
| dc.source.none.fl_str_mv |
Campus; Vol. 29 No. 37 (2024): Campus XXXVII Campus; Vol. 29 Núm. 37 (2024): Campus XXXVII Campus; v. 29 n. 37 (2024): Campus XXXVII 2523-1820 1812-6049 reponame:Revistas - Universidad de San Martín de Porres instname:Universidad de San Martín de Porres instacron:USMP |
| instname_str |
Universidad de San Martín de Porres |
| instacron_str |
USMP |
| institution |
USMP |
| reponame_str |
Revistas - Universidad de San Martín de Porres |
| collection |
Revistas - Universidad de San Martín de Porres |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1847517282160345088 |
| spelling |
APPLICATION OF DATA MINING IN MARKETING USING E-COMMERCE CUSTOMER SENTIMENT ANALYSISAPLICACIÓN DE LA MINERÍA DE DATOS EN EL MARKETING USANDO EL ANÁLISIS DE SENTIMIENTOS DE LOS CLIENTES E-COMMERCEAPLICAÇÃO DA EXTRACÇÃO DE DADOS NO MARKETING UTILIZANDO A ANÁLISE DO SENTIMENTO DO CLIENTE DO COMÉRCIO ELECTRÓNICOPETRLIK, IVANCoveñas Lalupu , José CARRANZA BARRENA, WILFREDOTORRES TALAVERANO, LUZMinería de datos, análisis de sentimientos, aprendizaje automático, e-commerceData mining, sentiment analysis, machine learning, e-commerceExtração de dados, análise de sentimentos, aprendizagem automática, comércio eletrónicoIn this study, sentiment analysis was developed and applied to technological products in the Twitter/X social network, also, the opinions expressed by customers were determined and finally the most suitable predictive model derived from Machine Learning was identified. For this purpose, 7102 tweets related to Apple and Samsung products were collected, using the methodology proposed by Erl, Khattak and Buhler which facilitated the implementation of its critical phases. The results obtained from sentiment analysis were evaluated using standard metrics such as Accuracy, Precision, Recall and F1-Score, applied to four machine learning models: K-Nearest Neighbors (KNN), Logistic Regression (LR), Random Forest (RF) and CatBoost Classifier (CC). Of these, the CatBoost Classifier proved to be the most effective, achieving 89% in Accuracy, 90% in Precision, 89% in Recall and 88% in F1-Score. It was concluded that the CatBoost Classifier model was the optimal model for analyzing sentiment on Twitter/X, due to its ability to provide valuable insights into the perception of promoted technology products enabling effectiveness in digital marketing campaigns.En este estudio se desarrolló y aplicó el análisis de sentimientos respecto a los productos tecnológicos en la red social Twitter/X, asimismo, se determinó las opiniones expresadas por los clientes donde finalmente se identificó el modelo predictivo más conveniente derivado del Machine Learning. Para ello, se recolectaron 7102 tweets relacionados a los productos de Apple y Samsung, empleando la metodología propuesta por Erl, Khattak y Buhler la cual facilitó la implementación de sus fases críticas. Los resultados obtenidos del análisis de sentimientos se evaluaron mediante métricas estándar como Accuracy, Precision, Recall y F1-Score, aplicadas a cuatro modelos de aprendizaje automático: K-Nearest Neighbors (KNN), Logistic Regression (LR), Random Forest (RF) y CatBoost Classifier (CC). De estos, el CatBoost Classifier demostró ser el más efectivo, logrando un 89% en Accuracy, 90% en Precision, 89% en Recall y 88% en F1-Score. Se concluyó que el modelo CatBoost Classifier fue el un modelo óptimo para analizar los sentimientos en Twitter/X, debido a su capacidad de proporcionar insights valiosos sobre la percepción de los productos tecnológicos promocionados permitiendo la eficacia en las campañas de marketing digital.Neste estudo, desenvolveu-se e aplicou-se a análise de sentimento a produtos tecnológicos na rede social Twitter/X, bem como para determinar as opiniões expressas pelos clientes, onde finalmente se identificou o modelo preditivo mais adequado derivado de Machine Learning. Para tal, foram recolhidos 7102 tweets relacionados com produtos Apple e Samsung, utilizando a metodologia proposta por Erl, Khattak e Buhler que facilitou a implementação das suas fases críticas. Os resultados obtidos a partir da análise de sentimento foram avaliados utilizando métricas padrão como Accuracy, Precision, Recall e F1-Score, aplicadas a quatro modelos de machine learning: K-Nearest Neighbors (KNN), Logistic Regression (LR), Random Forest (RF) e CatBoost Classifier (CC). Destes, o classificador CatBoost revelou-se o mais eficaz, atingindo 89% de exatidão, 90% de precisão, 89% de recuperação e 88% de pontuação F1. Concluiu-se que o modelo CatBoost Classifier era o modelo ideal para analisar o sentimento no Twitter/X, devido à sua capacidade de fornecer informações valiosas sobre a perceção dos produtos tecnológicos promovidos, permitindo campanhas de marketing digital eficazes. Universidad de San Martín de Porres2024-06-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/2855Campus; Vol. 29 No. 37 (2024): Campus XXXVIICampus; Vol. 29 Núm. 37 (2024): Campus XXXVIICampus; v. 29 n. 37 (2024): Campus XXXVII2523-18201812-6049reponame:Revistas - Universidad de San Martín de Porresinstname:Universidad de San Martín de Porresinstacron:USMPspahttps://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/2855/3777Derechos de autor 2024 DR.IVAN CARLO PETRLIK AZABACHE, DR. JOSÉ COVEÑAS LALUPU, Msc.WILFREDO CARRANZA BARRENA, BACH.LUZ ELENA TORRES TALAVERANOhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:revistas.usmp.edu.pe:article/28552025-08-22T14:28:43Z |
| score |
12.63363 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).