Predicting business bankruptcy: a comparative analysis with machine learning models
Descripción del Articulo
Business failure prediction has become crucially important for today’s firms, enabling them to reduce financial risks and make informed decisions. This study uses a dataset of 6819 companies and 96 financial and macroeconomic variables to present a comparative analysis of machine learning (ML) model...
| Autores: | , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad Tecnológica del Perú |
| Repositorio: | UTP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.utp.edu.pe:20.500.12867/14120 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12867/14120 https://doi.org/10.14445/22315381/IJETT-V72I8P102 |
| Nivel de acceso: | acceso abierto |
| Materia: | Bankruptcy prediction Machine learning Financial risk Data analysis https://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
UTPD_06500ca346e64c687b4457f96d6430fe |
|---|---|
| oai_identifier_str |
oai:repositorio.utp.edu.pe:20.500.12867/14120 |
| network_acronym_str |
UTPD |
| network_name_str |
UTP-Institucional |
| repository_id_str |
4782 |
| dc.title.es_PE.fl_str_mv |
Predicting business bankruptcy: a comparative analysis with machine learning models |
| title |
Predicting business bankruptcy: a comparative analysis with machine learning models |
| spellingShingle |
Predicting business bankruptcy: a comparative analysis with machine learning models Iparraguirre-Villanueva, Orlando Bankruptcy prediction Machine learning Financial risk Data analysis https://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
Predicting business bankruptcy: a comparative analysis with machine learning models |
| title_full |
Predicting business bankruptcy: a comparative analysis with machine learning models |
| title_fullStr |
Predicting business bankruptcy: a comparative analysis with machine learning models |
| title_full_unstemmed |
Predicting business bankruptcy: a comparative analysis with machine learning models |
| title_sort |
Predicting business bankruptcy: a comparative analysis with machine learning models |
| author |
Iparraguirre-Villanueva, Orlando |
| author_facet |
Iparraguirre-Villanueva, Orlando Cabanillas-Carbonell, Michael |
| author_role |
author |
| author2 |
Cabanillas-Carbonell, Michael |
| author2_role |
author |
| dc.contributor.author.fl_str_mv |
Iparraguirre-Villanueva, Orlando Cabanillas-Carbonell, Michael |
| dc.subject.es_PE.fl_str_mv |
Bankruptcy prediction Machine learning Financial risk Data analysis |
| topic |
Bankruptcy prediction Machine learning Financial risk Data analysis https://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
Business failure prediction has become crucially important for today’s firms, enabling them to reduce financial risks and make informed decisions. This study uses a dataset of 6819 companies and 96 financial and macroeconomic variables to present a comparative analysis of machine learning (ML) models for predicting corporate bankruptcies. Behind this research is to improve the accuracy of bankruptcy prediction, which can help companies make more informed decisions and reduce financial risks. This study aims to evaluate the effectiveness of 16 ML algorithms in terms of accuracy, sensitivity, and other relevant metrics. The work uses methodologies that include data collection and cleaning, exploratory data analysis, model preprocessing and training, and model performance evaluation. Data preprocessing and hyperparameter optimization techniques were used to improve model performance. The evaluated algorithms include classifiers such as Stacking Classifier (SCC), Randomized Search Classifier (RCV), Historical Gradient Boosting Classifier (HGBC), MLP Classifier (MLPC), K-Neighbors Classifier (KNC), Decision Tree Classifier (DTC), XGBRF Classifier (XGBRFC), Support Vector Classifier (SVC), Logistic Regression Classifier (LR), Linear SVC Classifier (LSVC). With an accuracy of 97.63 %, recall of 97.63 %, and F1-score of 97.63 %, the results show that the SCC algorithm was the best. Other models, such as RCV and DTC, also showed good results, with accuracies above 97 %. However, models such as PAC and BNB had lower performance and accuracy below 90 %. Finally, this study compares the results of ML models in predicting business failures and highlights their effectiveness. The SCC algorithm is considered the most suitable model for this task, as it suggests that it can help economic actors make more informed decisions and reduce financial risks in the context of firms. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2025-10-29T15:46:43Z |
| dc.date.available.none.fl_str_mv |
2025-10-29T15:46:43Z |
| dc.date.issued.fl_str_mv |
2024 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.issn.none.fl_str_mv |
2199-8531 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12867/14120 |
| dc.identifier.journal.es_PE.fl_str_mv |
International Journal of Engineering Trends and Technology |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.14445/22315381/IJETT-V72I8P102 |
| identifier_str_mv |
2199-8531 International Journal of Engineering Trends and Technology |
| url |
https://hdl.handle.net/20.500.12867/14120 https://doi.org/10.14445/22315381/IJETT-V72I8P102 |
| dc.language.iso.es_PE.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Seventh Sense Research Group |
| dc.source.es_PE.fl_str_mv |
Repositorio Institucional - UTP Universidad Tecnológica del Perú |
| dc.source.none.fl_str_mv |
reponame:UTP-Institucional instname:Universidad Tecnológica del Perú instacron:UTP |
| instname_str |
Universidad Tecnológica del Perú |
| instacron_str |
UTP |
| institution |
UTP |
| reponame_str |
UTP-Institucional |
| collection |
UTP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/d3581c71-eb18-44a5-bed0-5b8ebc5bf785/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/540942f3-9d9b-484e-b521-ee808bba7ac6/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/32b6c510-813c-40bd-98d4-15af245bfdb6/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/1eb5e2d0-72bd-4cd4-9efa-19fdffe56044/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/11202ce4-b4f1-463b-8fb7-fa6a326d93cf/download https://repositorio.utp.edu.pe/backend/api/core/bitstreams/38350f65-8208-4b48-acce-2a341cd41729/download |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 a40e5c8b86028bfeff543432da78eb38 64665e4268bb9a345d34db5a5c362428 09948bd2b4839300d83d6bd7e7359806 8522711418ee8cc6e9c5a0a0355ca111 bef1a08c3dc2c741624075a61b0c3bb8 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de la Universidad Tecnológica del Perú |
| repository.mail.fl_str_mv |
repositorio@utp.edu.pe |
| _version_ |
1852231348073267200 |
| spelling |
Iparraguirre-Villanueva, OrlandoCabanillas-Carbonell, Michael2025-10-29T15:46:43Z2025-10-29T15:46:43Z20242199-8531https://hdl.handle.net/20.500.12867/14120International Journal of Engineering Trends and Technologyhttps://doi.org/10.14445/22315381/IJETT-V72I8P102Business failure prediction has become crucially important for today’s firms, enabling them to reduce financial risks and make informed decisions. This study uses a dataset of 6819 companies and 96 financial and macroeconomic variables to present a comparative analysis of machine learning (ML) models for predicting corporate bankruptcies. Behind this research is to improve the accuracy of bankruptcy prediction, which can help companies make more informed decisions and reduce financial risks. This study aims to evaluate the effectiveness of 16 ML algorithms in terms of accuracy, sensitivity, and other relevant metrics. The work uses methodologies that include data collection and cleaning, exploratory data analysis, model preprocessing and training, and model performance evaluation. Data preprocessing and hyperparameter optimization techniques were used to improve model performance. The evaluated algorithms include classifiers such as Stacking Classifier (SCC), Randomized Search Classifier (RCV), Historical Gradient Boosting Classifier (HGBC), MLP Classifier (MLPC), K-Neighbors Classifier (KNC), Decision Tree Classifier (DTC), XGBRF Classifier (XGBRFC), Support Vector Classifier (SVC), Logistic Regression Classifier (LR), Linear SVC Classifier (LSVC). With an accuracy of 97.63 %, recall of 97.63 %, and F1-score of 97.63 %, the results show that the SCC algorithm was the best. Other models, such as RCV and DTC, also showed good results, with accuracies above 97 %. However, models such as PAC and BNB had lower performance and accuracy below 90 %. Finally, this study compares the results of ML models in predicting business failures and highlights their effectiveness. The SCC algorithm is considered the most suitable model for this task, as it suggests that it can help economic actors make more informed decisions and reduce financial risks in the context of firms.Campus Chimboteapplication/pdfengSeventh Sense Research Groupinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPBankruptcy predictionMachine learningFinancial riskData analysishttps://purl.org/pe-repo/ocde/ford#2.02.04Predicting business bankruptcy: a comparative analysis with machine learning modelsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/d3581c71-eb18-44a5-bed0-5b8ebc5bf785/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTIparraguirre.O_Cabanillas.M_Articulo_2024.pdf.txtIparraguirre.O_Cabanillas.M_Articulo_2024.pdf.txtExtracted texttext/plain50854https://repositorio.utp.edu.pe/backend/api/core/bitstreams/540942f3-9d9b-484e-b521-ee808bba7ac6/downloada40e5c8b86028bfeff543432da78eb38MD53O.Iparraguirre_M.Cabanillas_Articulo_2024.pdf.txtO.Iparraguirre_M.Cabanillas_Articulo_2024.pdf.txtExtracted texttext/plain55605https://repositorio.utp.edu.pe/backend/api/core/bitstreams/32b6c510-813c-40bd-98d4-15af245bfdb6/download64665e4268bb9a345d34db5a5c362428MD58THUMBNAILIparraguirre.O_Cabanillas.M_Articulo_2024.pdf.jpgIparraguirre.O_Cabanillas.M_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg20369https://repositorio.utp.edu.pe/backend/api/core/bitstreams/1eb5e2d0-72bd-4cd4-9efa-19fdffe56044/download09948bd2b4839300d83d6bd7e7359806MD54O.Iparraguirre_M.Cabanillas_Articulo_2024.pdf.jpgO.Iparraguirre_M.Cabanillas_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg42842https://repositorio.utp.edu.pe/backend/api/core/bitstreams/11202ce4-b4f1-463b-8fb7-fa6a326d93cf/download8522711418ee8cc6e9c5a0a0355ca111MD59ORIGINALO.Iparraguirre_M.Cabanillas_Articulo_2024.pdfO.Iparraguirre_M.Cabanillas_Articulo_2024.pdfapplication/pdf3084742https://repositorio.utp.edu.pe/backend/api/core/bitstreams/38350f65-8208-4b48-acce-2a341cd41729/downloadbef1a08c3dc2c741624075a61b0c3bb8MD5520.500.12867/14120oai:repositorio.utp.edu.pe:20.500.12867/141202025-11-30 16:29:38.917https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.918015 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).