Predicting business bankruptcy: a comparative analysis with machine learning models

Descripción del Articulo

Business failure prediction has become crucially important for today’s firms, enabling them to reduce financial risks and make informed decisions. This study uses a dataset of 6819 companies and 96 financial and macroeconomic variables to present a comparative analysis of machine learning (ML) model...

Descripción completa

Detalles Bibliográficos
Autores: Iparraguirre-Villanueva, Orlando, Cabanillas-Carbonell, Michael
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad Tecnológica del Perú
Repositorio:UTP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.utp.edu.pe:20.500.12867/14120
Enlace del recurso:https://hdl.handle.net/20.500.12867/14120
https://doi.org/10.14445/22315381/IJETT-V72I8P102
Nivel de acceso:acceso abierto
Materia:Bankruptcy prediction
Machine learning
Financial risk
Data analysis
https://purl.org/pe-repo/ocde/ford#2.02.04
id UTPD_06500ca346e64c687b4457f96d6430fe
oai_identifier_str oai:repositorio.utp.edu.pe:20.500.12867/14120
network_acronym_str UTPD
network_name_str UTP-Institucional
repository_id_str 4782
dc.title.es_PE.fl_str_mv Predicting business bankruptcy: a comparative analysis with machine learning models
title Predicting business bankruptcy: a comparative analysis with machine learning models
spellingShingle Predicting business bankruptcy: a comparative analysis with machine learning models
Iparraguirre-Villanueva, Orlando
Bankruptcy prediction
Machine learning
Financial risk
Data analysis
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Predicting business bankruptcy: a comparative analysis with machine learning models
title_full Predicting business bankruptcy: a comparative analysis with machine learning models
title_fullStr Predicting business bankruptcy: a comparative analysis with machine learning models
title_full_unstemmed Predicting business bankruptcy: a comparative analysis with machine learning models
title_sort Predicting business bankruptcy: a comparative analysis with machine learning models
author Iparraguirre-Villanueva, Orlando
author_facet Iparraguirre-Villanueva, Orlando
Cabanillas-Carbonell, Michael
author_role author
author2 Cabanillas-Carbonell, Michael
author2_role author
dc.contributor.author.fl_str_mv Iparraguirre-Villanueva, Orlando
Cabanillas-Carbonell, Michael
dc.subject.es_PE.fl_str_mv Bankruptcy prediction
Machine learning
Financial risk
Data analysis
topic Bankruptcy prediction
Machine learning
Financial risk
Data analysis
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description Business failure prediction has become crucially important for today’s firms, enabling them to reduce financial risks and make informed decisions. This study uses a dataset of 6819 companies and 96 financial and macroeconomic variables to present a comparative analysis of machine learning (ML) models for predicting corporate bankruptcies. Behind this research is to improve the accuracy of bankruptcy prediction, which can help companies make more informed decisions and reduce financial risks. This study aims to evaluate the effectiveness of 16 ML algorithms in terms of accuracy, sensitivity, and other relevant metrics. The work uses methodologies that include data collection and cleaning, exploratory data analysis, model preprocessing and training, and model performance evaluation. Data preprocessing and hyperparameter optimization techniques were used to improve model performance. The evaluated algorithms include classifiers such as Stacking Classifier (SCC), Randomized Search Classifier (RCV), Historical Gradient Boosting Classifier (HGBC), MLP Classifier (MLPC), K-Neighbors Classifier (KNC), Decision Tree Classifier (DTC), XGBRF Classifier (XGBRFC), Support Vector Classifier (SVC), Logistic Regression Classifier (LR), Linear SVC Classifier (LSVC). With an accuracy of 97.63 %, recall of 97.63 %, and F1-score of 97.63 %, the results show that the SCC algorithm was the best. Other models, such as RCV and DTC, also showed good results, with accuracies above 97 %. However, models such as PAC and BNB had lower performance and accuracy below 90 %. Finally, this study compares the results of ML models in predicting business failures and highlights their effectiveness. The SCC algorithm is considered the most suitable model for this task, as it suggests that it can help economic actors make more informed decisions and reduce financial risks in the context of firms.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2025-10-29T15:46:43Z
dc.date.available.none.fl_str_mv 2025-10-29T15:46:43Z
dc.date.issued.fl_str_mv 2024
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
dc.type.version.es_PE.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 2199-8531
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12867/14120
dc.identifier.journal.es_PE.fl_str_mv International Journal of Engineering Trends and Technology
dc.identifier.doi.none.fl_str_mv https://doi.org/10.14445/22315381/IJETT-V72I8P102
identifier_str_mv 2199-8531
International Journal of Engineering Trends and Technology
url https://hdl.handle.net/20.500.12867/14120
https://doi.org/10.14445/22315381/IJETT-V72I8P102
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Seventh Sense Research Group
dc.source.es_PE.fl_str_mv Repositorio Institucional - UTP
Universidad Tecnológica del Perú
dc.source.none.fl_str_mv reponame:UTP-Institucional
instname:Universidad Tecnológica del Perú
instacron:UTP
instname_str Universidad Tecnológica del Perú
instacron_str UTP
institution UTP
reponame_str UTP-Institucional
collection UTP-Institucional
bitstream.url.fl_str_mv https://repositorio.utp.edu.pe/backend/api/core/bitstreams/d3581c71-eb18-44a5-bed0-5b8ebc5bf785/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/540942f3-9d9b-484e-b521-ee808bba7ac6/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/32b6c510-813c-40bd-98d4-15af245bfdb6/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/1eb5e2d0-72bd-4cd4-9efa-19fdffe56044/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/11202ce4-b4f1-463b-8fb7-fa6a326d93cf/download
https://repositorio.utp.edu.pe/backend/api/core/bitstreams/38350f65-8208-4b48-acce-2a341cd41729/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
a40e5c8b86028bfeff543432da78eb38
64665e4268bb9a345d34db5a5c362428
09948bd2b4839300d83d6bd7e7359806
8522711418ee8cc6e9c5a0a0355ca111
bef1a08c3dc2c741624075a61b0c3bb8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad Tecnológica del Perú
repository.mail.fl_str_mv repositorio@utp.edu.pe
_version_ 1852231348073267200
spelling Iparraguirre-Villanueva, OrlandoCabanillas-Carbonell, Michael2025-10-29T15:46:43Z2025-10-29T15:46:43Z20242199-8531https://hdl.handle.net/20.500.12867/14120International Journal of Engineering Trends and Technologyhttps://doi.org/10.14445/22315381/IJETT-V72I8P102Business failure prediction has become crucially important for today’s firms, enabling them to reduce financial risks and make informed decisions. This study uses a dataset of 6819 companies and 96 financial and macroeconomic variables to present a comparative analysis of machine learning (ML) models for predicting corporate bankruptcies. Behind this research is to improve the accuracy of bankruptcy prediction, which can help companies make more informed decisions and reduce financial risks. This study aims to evaluate the effectiveness of 16 ML algorithms in terms of accuracy, sensitivity, and other relevant metrics. The work uses methodologies that include data collection and cleaning, exploratory data analysis, model preprocessing and training, and model performance evaluation. Data preprocessing and hyperparameter optimization techniques were used to improve model performance. The evaluated algorithms include classifiers such as Stacking Classifier (SCC), Randomized Search Classifier (RCV), Historical Gradient Boosting Classifier (HGBC), MLP Classifier (MLPC), K-Neighbors Classifier (KNC), Decision Tree Classifier (DTC), XGBRF Classifier (XGBRFC), Support Vector Classifier (SVC), Logistic Regression Classifier (LR), Linear SVC Classifier (LSVC). With an accuracy of 97.63 %, recall of 97.63 %, and F1-score of 97.63 %, the results show that the SCC algorithm was the best. Other models, such as RCV and DTC, also showed good results, with accuracies above 97 %. However, models such as PAC and BNB had lower performance and accuracy below 90 %. Finally, this study compares the results of ML models in predicting business failures and highlights their effectiveness. The SCC algorithm is considered the most suitable model for this task, as it suggests that it can help economic actors make more informed decisions and reduce financial risks in the context of firms.Campus Chimboteapplication/pdfengSeventh Sense Research Groupinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Repositorio Institucional - UTPUniversidad Tecnológica del Perúreponame:UTP-Institucionalinstname:Universidad Tecnológica del Perúinstacron:UTPBankruptcy predictionMachine learningFinancial riskData analysishttps://purl.org/pe-repo/ocde/ford#2.02.04Predicting business bankruptcy: a comparative analysis with machine learning modelsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.utp.edu.pe/backend/api/core/bitstreams/d3581c71-eb18-44a5-bed0-5b8ebc5bf785/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTIparraguirre.O_Cabanillas.M_Articulo_2024.pdf.txtIparraguirre.O_Cabanillas.M_Articulo_2024.pdf.txtExtracted texttext/plain50854https://repositorio.utp.edu.pe/backend/api/core/bitstreams/540942f3-9d9b-484e-b521-ee808bba7ac6/downloada40e5c8b86028bfeff543432da78eb38MD53O.Iparraguirre_M.Cabanillas_Articulo_2024.pdf.txtO.Iparraguirre_M.Cabanillas_Articulo_2024.pdf.txtExtracted texttext/plain55605https://repositorio.utp.edu.pe/backend/api/core/bitstreams/32b6c510-813c-40bd-98d4-15af245bfdb6/download64665e4268bb9a345d34db5a5c362428MD58THUMBNAILIparraguirre.O_Cabanillas.M_Articulo_2024.pdf.jpgIparraguirre.O_Cabanillas.M_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg20369https://repositorio.utp.edu.pe/backend/api/core/bitstreams/1eb5e2d0-72bd-4cd4-9efa-19fdffe56044/download09948bd2b4839300d83d6bd7e7359806MD54O.Iparraguirre_M.Cabanillas_Articulo_2024.pdf.jpgO.Iparraguirre_M.Cabanillas_Articulo_2024.pdf.jpgGenerated Thumbnailimage/jpeg42842https://repositorio.utp.edu.pe/backend/api/core/bitstreams/11202ce4-b4f1-463b-8fb7-fa6a326d93cf/download8522711418ee8cc6e9c5a0a0355ca111MD59ORIGINALO.Iparraguirre_M.Cabanillas_Articulo_2024.pdfO.Iparraguirre_M.Cabanillas_Articulo_2024.pdfapplication/pdf3084742https://repositorio.utp.edu.pe/backend/api/core/bitstreams/38350f65-8208-4b48-acce-2a341cd41729/downloadbef1a08c3dc2c741624075a61b0c3bb8MD5520.500.12867/14120oai:repositorio.utp.edu.pe:20.500.12867/141202025-11-30 16:29:38.917https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.utp.edu.peRepositorio de la Universidad Tecnológica del Perúrepositorio@utp.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.918015
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).